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ABSTRACT 
 
We present a monaural blind de-reverberation method based 
on sparse coding of de-convolved version of reverberated 
speech signal in a dictionary which is learned by joint 
dictionary learning method, consisting of the concatenation 
of a clean speech and a non-negative matrix factor de-
convolution result of the reverberated copy. The 
environment specific dictionary is originally learned off-line 
on a training corpus for different locations, while adaptive 
dictionary learning continues on-line for any other 
surroundings. Our approach uses both non-negative blind de-
convolution and sparse coding, and achieves some 
improvements on objective voice quality testing’s like 
perceptual evaluation of speech quality. 
 

Index Terms—speech dereverberation, sparse coding, 
dictionary learning, Non-negative Matrix Factor 
Deconvolution 

 
1 INTRODUCTION 

 
Dereverberation is a highly appropriate and difficult task. Its 
importance is due to the variety of practical applications 
while the difficulty arises from the dynamic and long time 
effect that reverberant environments influence on speech 
signals. The aim of adaptive dictionary learning is to remove 
long and non-stationary facts which significantly reduce both 
speech quality and intelligibility. 
 Dereverberating speech which is degraded by 
convolutional noise of reverberant environments (e.g. 
classrooms, halls, inside car, etc) is both a highly quality 
improving and difficult task. Its importance is due to its 
contribution in quality of service in various practical signal 
processing applications including mobile communications, 
speech recording and speech recognition. The difficulties are 
from the dynamic and long time degradation that 
reverberation affects on speech signals.  
 Technically speaking, reverberation is the effect of the 
acoustic channel from the speech source up to the hearing 
system. The effect of reverberation begins with the 

production of sound at a location inside a room. The acoustic 
wave expands radial, reaching walls and other surfaces 
where energy is both absorbed and reflected. This effect can 
mainly be modeled by a linear time invariant system: 
 
 ��[�]= ��[�]∗ ℎ[�] (1) 
 
where, * denotes discrete time linear convolution, sc[n] is 
source or clean speech signal, h[n] is the impulse response of 
a linear system or RIR (Room Impulse Response), sr[n] is 
the reverberated signal and n is the time index. The 
parameters of the filter h[n] change with changes in the 
environmental parameters such as size of the room, room 
configuration, position of objects etc. It is typically assumed 
that the room-response spectral variations rate is slow 
comparing to the spectral variation rate of speech. As a 
result, for a short duration (e.g. two or three seconds), we can 
assume that h[n] is time invariant and thus the entire system 
in (1) becomes a linear time invariant (LTI) system. 
 The impulse response of LTI system, h[n], is 
distinguished into two portions: early reverberation, 
composed by strong sparse reflections, and late 
reverberation, characterized by uniform diffusion of the 
reflections. Ignoring the second part, the impulse response of 
a room is simplified as a sparse FIR filter which means that 
the number of reflections or nonzero coefficients of h is 
small in comparison to the length of the whole RIR which is 
usually about 100ms. 
 
1.1 Related Work in Derverberation 
 
Blind dereverberation is estimation of the original clean 
signal from received signal without knowledge of the RIR. 
Several proposed approaches are classified into two 
categories by considering whether the inverse RIR is 
necessary to estimate or not. In fact, all algorithms attempt to 
obtain clean signal by attenuating the RIR effects or by 
cancelling it. Simply, a group of algorithms try to lighten the 
symptoms of the signal degradation, while the other attempt 
to find a solution for its cause. Regardless of many different 
algorithms, practical dereverberation is still an open 
problem. 
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1) Beamforming: Beamforming is a filtering method 
designed to configure multiple electrical sensors e.g. 
microphones to convey a special directivity pattern [1]. This 
can be used to differentiate a source in a noisy environment 
or to attenuate the interference caused by reverberation. 
Speech enhancement of a signal recorded from a far field 
acquisition is a typical application. This technique can also 
be used to obtain a higher intelligibility of the diffused signal 
by designing a loudspeaker array that can focus the acoustic 
energy in a confined spatial region, minimizing the 
reflections due to the surrounding walls and objects. 
 
2) Speech Enhancement: Speech dereverberation using 
enhancement algorithms e.g. peak picking algorithm to 
identify and remove peaks in cepstrum of speech signal has 
initially suggested by Oppenheim and Schafer [2] and 
followed by others e.g. Bees et al. [3] later.  
 
3) Blind Deconvolution: Blind system identification or 
deconvolution is based on the idea that reverberation effect 
can be modeled as LTI system assuming the possibility to 
identify multichannel FIR systems based only on the channel 
outputs under certain conditions [4]. 
Blind multichannel system identification is usually made by 
the cross-relation between two records sr1 and sr2 and the 
corresponding two slightly different RIRs h1 and h2, where 
the time index is temporarily omitted for simplicity. The 
cross-relation is given by: 
 
 ��� ∗ ℎ� = (��[�]∗ ℎ�)∗ ℎ� = ��� ∗ ℎ� (2) 
 
which leads to the system of equations: 
 
 R × h = 0 (3) 
 
these equations can be solved using least squares method 
assuming that: a) RIRs does not include any zeros, b) 
correlation matrix of clean signal is full ranked [4]. 
 Complementary, in continue to the conventional 
methods for channel identification, some novel methods are 
proposed by Kameoka et al. [5] and Kumar et al. [6] that use 
monaural signals instead of multiple observations with the 
aid of sparse and non-negative nature of speech signals in 
short time Fourier transform or STFT domain. 
 
1.2 Sparse Coding 
 
Sparse coding is the process of finding a vector � ∈ ℛ � from 
a given signal � ∈ ℛ �  and overcomplete (� ≪ �) matrix 
� ∈ ℛ � × � known as dictionary such that: 

 ���‖�‖�
�

������� �� � = �� (4) 

or 

 ���‖�‖�
�

������� �� ‖� − ��‖� ≤ � (5) 

where ‖ ‖�  is lp-norm. This is an optimization problem 
which obviously does not have a unique solution. Therefore, 

the process of finding sparsest representation (4) or 
approximation (5) is typically done by one of the pursuit 
algorithms. Parameter p depends on coding algorithm e.g. 
p=0 for OMP algorithm and p=1 for Lasso or BP algorithm. 
 Obviously, sparse coding not only depends on the 
algorithm which finds sparsest code, x, but also depends on 
dictionary, D, which is required to be as complete as 
possible. Dictionary matrix D is typically learned by one of 
the known dictionary learning methods e.g. NMF. 
Fortunately, dictionary learning is being popular in recent 
years and various algorithms have proposed for different 
applications e.g. sparse coding [7], image enhancement [8] 
and noise cancellation [9], speech source separation [10], 
speech coding [11], speech enhancement [12] and convolved 
signals [13].  
 Despite of algorithms that use l1–norm for sparse 
coding, a new method named K-SVD has used l0-norm 
instead [9]. Experiments on GRID speech corpus shows that 
it gives very good results for speech enhancement [14]. 
 
1.3 Contributions of Paper  
 
We propose an extension to the novel methods [5] [6] that 
can be interpreted as an essential non-negative matrix factor 
deconvolution (NMFD) algorithm [15] using K-SVD 
dictionary learning [9] to enhance estimated speech signal 
after deconvolution process by means of special sparse 
coding algorithm named least angle regression with a 
coherence criterion or LARC [12]. 
 Adaptive sparse dictionary learning consists of two steps 
aiming to improve both speech quality and intelligibility: 
first non-negative blind deconvolution to remove long time 
influence of room impulse response on the speech signal, 
second an adaptive sparse coding to compensate variations 
of recording sight (e.g. microphone movement, changes in 
speaker position or any reflecting obstacle inside the acoustic 
environment.  
 We present a monaural blind dereverberation method 
based on sparse coding of NMFD version of reverberated 
speech signal in a dictionary learned by joint dictionary 
learning method [16], consisting of the concatenation of a 
clean speech and a deconvolved version of reverberated 
copy. Suppose we have three different monaural records of 
the same voice played back inside a small, medium and large 
room respectively. What we expect from the NMFD 
algorithm is something like: 
 

 
��� = �� ∗

→ �� 
��� = �� ∗

→ � �  
��� = �� ∗

→ � �  
(6) 

 
where ���,���,���  are captured speech in small, medium and 
large room respectively; �� is clean speech, ��,� �,� �  are 
their RIRs; and ∗→  is defined as following: 
 

 � ∗→ � = ��→ ���
�

 (7) 
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where the operator ( )� →  shifts the columns of its 
argument by m spots to the right; and �� is a diagonal matrix 
made from nth column of B. 
 In practice, we do not reach such a straightforward 
answer (Fig. 1). Why? Because, to be able to use NMF, we 
used magnitude spectrogram, which is non-negative, instead 
of complete STFT; and phase effect is ignored though it 
contains important information. Therefore, we rewrite (7) as 
following: 

 
��� = ��� ∗

→ �� 
��� = ��� ∗

→ � �  
��� = ��� ∗

→ � �  
(8) 

 
Although, ���,���,��� are different non-negative matrices, 
they carry similar information or speech features. At this 
stage, we need a block that can translate deconvolved speech 
features into clean speech atoms. To be able to do this 
transform, we use joint dictionary learning [16] which can be 
done using one of the following datasets: 
 

- ��� and proper clean speech 
- ���  and proper clean speech 
- ���  and proper clean speech 

 
Environment specific dictionary is originally learned off-line 
on a training corpus for different locations, while adaptive 
dictionary learning continues on-line for any alternate 
surroundings. Our approach uses both non-negative blind 
deconvolution and sparse coding, thus achieves significant 
improvements on objective voice quality testing’s like 
PESQ. 
 Theoretically, a sample reverberant environment will be 
used to simulate behavior of phase which is a random 
variable. It is not any specific input or constraint to the 
proposed method. Analytically, there should not be much 
difference between different dictionaries learned by any of 
the named datasets. However, in statistical point of view, it’s 
preferred to use concatenation of ���,���,���  matrices and 
proper clean speech to learn a general dictionary. 
 

2 PROPOSED METHOD 
 
Our structure is based on the sparse and non-negative nature 
of magnitude of speech signals in STFT domain as recently 
proposed for speech enhancement [14]. We assume that the 
phase of the reverberated signal can approximate phase of 
the dereverberated signal as is commonly used in the 
derivation of speech enhancement algorithms e.g. spectral 
subtraction, adaptive filtering, and subspace approach. 
 
2.1 Motivations 
 
Convolutive reverberation can be expressed in terms of RIR 
(1). Equivalently, in STFT domain we may write: 
 

 ��[�]= ���
�

[�]� [� − �] (9) 

 

where Sr, Sc and H are magnitudes of reverberated signal, 
clean signal and RIR in frequency domain respectively. 
Equation (9) can also be written in the form of operators as 
following: 

 �� ≅ ��� = � ���,�

�

� ��

� � →  (10) 

 
Non-negative Matrix Factor Deconvolution (NMFD): 
beginning with the decomposition of non-negative matrix 
� ∈ ℛ �

�×� into multiplication of two non-negative matrices 
� ∈ ℛ �

�× � and � ∈ ℛ �
�×� where P < M such that we 

minimize the error of reconstruction of V by W·H using the 
cost function introduced by Lee et al. [17]: 
 

 � = ��⨂�� �
�

�. �
� − � +�. � �

�
 (11) 

 
which yields to an iterative solution: 
 

 

⎩
⎪
⎨

⎪
⎧
� = � ⨂

�� �
�. �

��. 1

� = � ⊗

�
�.�

� �

1. � �

� (12) 

 
where ⨂ operator is Hadamard product (an element-wise 
multiplication) and divisions are element-wise too. Setting 
 

 Λ = ����
�→

���

���

 (13) 

 
and using cost function 
 

 � = ��⨂�� �
�

Λ
� − � + Λ�

�
 (14) 

 
results: 

 

⎩
⎪
⎨

⎪
⎧
� = � ⨂

��
� �

�
Λ
�
←�

��
� ∙ 1

�� = �� ⊗

�
Λ
� �→ �

1 ∙ � �→ �

� (15) 

 
substituting Wt, V and Λ with ���,� , ��  and ���  consequently 
yields: 
 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

� = � ⨂

���,�
�  ∙ �

��
���
�
� →

���,�
�  ∙ 1

���,� = ���,� ⨂

��
���
 (� � → )�

1 ∙  � � →

� (16) 
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Joint Dictionary Learning: In a pioneering work on 
producing supper resolution images by Yang et al. [16], a 
pair of jointly learned dictionaries (�� , ��) is used, one 
dictionary for blurred samples and the other for sharp 
samples. During training, a dictionary D is learned to 
represent both sharp and blurred examples simultaneously 
with the same sparse code e.g. α; then D is split into two 
distinct dictionaries �� and �� to represent blurry ��� and 
sharp samples ��� in consequence. At test time, given a new 
blurry sample x, a sparse code α is obtained by decomposing 
x using Db, and ones hopes ��� to be a good estimate of the 
unknown sharp sample. 
 There is an interesting relationship between dictionary 
learning method used for image processing application to 
extract supper resolution samples from the blurry one and 
our application which aims to enhance the speech 
spectrogram of deconvolved version of reverberated speech 
signal, ���, which is sparse enough and will have possibly 
overcomplete dictionary. 
 Having both clean and reverberated speech signals at 
training time, we first deconvolve reverberated signal to get 
��� and then use it as a training set similar to what is done in 
deblurring application as blurry patches. Therefore, we may 
write: 
 �� ≅ ��� (17) 
or 

 �
��
���
� ≅ �

��

��
� � (18) 

 
where �� , ��  and ��  are named joint, clean and reverberated 
dictionaries respectively. 
 
2.2 Proposed Architecture 
 
Our approach is based on two distinct steps: deconvolution 
and enhancement. Deconvolution step is commonly applied 
in both training and test, but enhancement has different story. 
For the enhancement step, a possibly overcomplete 
dictionary of atoms is trained jointly using joint dictionary 
learning,  for clean and deconvolved version of reverberated 
copy of speech magnitudes which are then split into two 
distinct dictionaries named as clean and reverberated. In the 
enhancement step, an observation of reverberated speech is 
first deconvolved and then sparsely coded in the reverberated 
dictionary. The clean speech magnitude is estimated by 
multiplying clean dictionary to the extracted sparse code. 
This estimate is combined with the post-processed phase of 
the reverberated signal to produce the time domain signal. 

As discussed in the introduction, we suppose that the 
observed reverberated speech magnitude is the convolution 
result of clean speech magnitude �� and RIR. The goal of the 
deconvolution step is to obtain an estimate ��� of clean 
speech and an estimate of the RIR. For the formal analysis, 
we distinguish between convolutive and non-convolutive 
reverberation effects (e.g. classroom and studio, 
respectively), and make use of results from sparse coding 
theory to enhance only reverberated speech in the 
convolutive environments. 

 Given ���, a speech dictionary �� ∈ ℛ �× �  and a 
reverberant dictionary �� ∈ ℛ �× � we find spars 
decomposition of estimated speech in ��  using LARC sparse 
coding algorithm [14]: 
 
 ��� ≅ ��� (19) 
 
and multiply known dictionary ��  to sparse code α to make 
final dereverberated or clean speech estimate: 
 �� ≅ ��� (20) 
2.3 Post-Processing 
 
Although the dereverberation process described so far can 
obtain reasonable results on objective testing’s measured for 
output sounds, it does not need to be the end of the 
dereverberation process. We can use some post-processing 
on the phase of output signal to boost the quality of the 
results even more. In this section we briefly describe a 
possible approach using phase continuity of voiced speech 
signal. 
 A voiced speech frame can be written as a weighted sum 
of limited number of sinusoids e.g. N, leading to the 
harmonic signal model: 
 

 �[�]= � ��cos (��� + ��)

���

���

 (21) 

where an, φn and ωn are amplitude, phase and normalized 
angular frequency: 
 
 �� = 2� �� ��⁄ = 2�(� + 1)�� ��⁄  (22) 
 
where, fs, f0, and fn are sampling, fundamental and harmonic 
frequencies in consequence. The instantaneous phase of each 
sinusoid term of (18) in continuous time can be expressed as: 
 

 �(�) = � �(�)��
�

 (23) 

 
we may assume ωn constant if the integration interval is [tn-1, 
tn], therefore: 
 

 
∆�� ≅ � ���� = ��(�� − ����)

��

����

= 2�
��
��
� 

(24) 

 
hence, the phase differences of consecutive analysis of 
voiced frames n and n-1 in STFT domain for frequency bin 
m can be estimated as following: 
 

 

∆�[�,�]= �[�,�]− �[�,� − 1]

= 2�
�� − ��

(�)

��
� 

(25) 

 
where N is FFT window length and fn

(n) is normalized 
harmonic frequency of frame n. 
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(a) Clean Signal (b) Reverberated Signal 

 
(c) Deconvolved Signal (d) Dereverberated Signal 

 

Fig. 1. Spectrogram of Clean, Rreverberated, Deconvolved and Dereverberated using joint dictionary learning signals. 

 Beginning with the initial estimation of clean speech 
phase of voiced sound, we can compute approximate clean 
phase of subsequent frames using harmonic frequency of 
each frame which is directly related to the fundamental 
frequency or pitch of speech signal. 
 

3  EXPERIMENTS 
 
To evaluate the proposed method, we used the data provided 
by REVERB2014 which consists of a training set and two 
test sets; one for development and the other for evaluation. 
Both development and evaluation test set consist of two 
different parts, namely simulated data, SimData: utterances 
from the WSJCAM0 corpus [19]; and real recordings, 
RealData: utterances from the MC-WSJ-AV corpus [18]. 
 Training utterance of each speaker transformed to STFT 
domain using discrete time FFT, Hanning window of size 
64ms or 1024 samples and 50% overlap or 32ms step size. 

Reverberated samples of each speaker are also transformed 
to the STFT domain using the same parameters and 
deconvolved using NMFD algorithm with 10 iterations. 
Deconvolved version of training samples concatenated to 
their respective clean samples to train joint dictionary. Joint 
dictionary, then split into two distinct dictionaries named 
clean dictionary and reverberation dictionary.  
 Spectrograms of the clean speech signal and the 
synthesized reverberant signal of a sample speech are 
illustrated in Fig. 1 (a) and (b) respectively. The 
spectrograms of the deconvolved signal obtained after 
NMFD step and final dereverberated signal after applying 
speech enhancement using joint dictionary learning are 
shown in Fig. 1 (c), (d). 
 We used MATLAB™ scripts from REVERB Challenge 
2014 which contains different objective testing’s except 
PESQ to measure the dereverberation performance. For the 
PESQ objective test, we used C source code from ITU 
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official homepage and compiled it using Visual Studio 
2010™ to make a standalone executable program for 64-bit 
Windows™ operating system. 
 For the sample case, the present method improved the 
PEQS from 2.326 to 2.886, while the recently proposed 
approach using NMFD was only able to improve it to 2.442 
(table I). 
 Overall results show that the proposed method improves 
all of the objective test values as cepstrum distance, log 
likelihhod ratio, frequency weighted segmental SNR, SRMR 
and PESQ. 

TABLE I.  SAMPLE TEST RESULT 

Signal 
PESQ 

Rev. Phase Clean Phase 

Clean - 4.500 
Reverberated 2.326 - 
Deconvolved 2.442 2.907 
Dereverberated 2.886 3.477 

 
Outputs of applying this method on evaluation test set (full 
batch, monaural) are summarized in tables II to VI. 
 

4 CONCLUSION 
 
In this paper, we have introduced the possibility of using 
convolutive non-negative matrix factorization in 
consequence to the sparse dictionary learning to address the 
reverberation problem. We believe, this kind of enhancement 
which currently is unusual, will be the primary material of an 
optimized algorithm for speech signal dereverberation in 
future. 
 
 
 

TABLE II.  CEPSTRUM DISTANCE 

 Mean Median 

Room Org. Enh. Org. Enh. 

Far-1 2.67 3.38 2.30 3.05 
Far-2 5.21 3.78 5.04 3.43 
Far-3 4.96 3.62 4.73 3.34 

Near-1 1.99 3.35 1.68 3.02 
Near-2 4.63 3.62 4.24 3.25 
Near-3 4.38 3.48 4.04 3.10 

Average 3.97 3.53 3.69 3.21 

 
 
 

TABLE III.  SRMR 

 Mean Median 

Room Org. Enh. Org. Enh. 

Far-1 4.58 5.19 - - 
Far-2 2.97 5.03 - - 
Far-3 2.73 4.97 - - 

Near-1 4.50 5.25 - - 
Near-2 3.74 5.23 - - 
Near-3 3.57 5.20 - - 

Average 3.68 5.15 - - 

TABLE IV.  LOG LIKELIHOOD RATIO 

 Mean Median 

Room Org. Enh. Org. Enh. 

Far-1 0.38 0.40 0.35 0.35 
Far-2 0.75 0.47 0.63 0.41 
Far-3 0.84 0.49 0.76 0.43 

Near-1 0.35 0.39 0.33 0.34 
Near-2 0.49 0.42 0.40 0.36 
Near-3 0.65 0.43 0.59 0.38 

Average 0.58 0.43 0.51 0.38 

 
 
 

TABLE V.  FREQUENCY WEIGHTED SEGMENTAL SNR 

 Mean Median 

Room Org. Enh. Org. Enh. 

Far-1 6.68 8.83 9.24 10.98 
Far-2 1.04 7.23 1.77 9.65 
Far-3 0.24 6.97 0.89 8.97 

Near-1 8.12 9.22 10.72 11.38 
Near-2 3.35 8.62 5.52 11.26 
Near-3 2.27 8.33 4.21 10.61 

Average 3.62 8.20 5.39 10.48 

 
 
 

TABLE VI.  PESQ 

 Mean Median 

Room Org. Enh. Org. Enh. 

Far-1 2.59 2.75 - - 
Far-2 1.99 2.66 - - 
Far-3 1.87 2.62 - - 

Near-1 3.11 2.78 - - 
Near-2 2.39 2.77 - - 
Near-3 2.27 2.76 - - 

Average 2.37 2.72 - - 

 
 
 

TABLE VII.  SRMR (REALDATA) 

 Mean Median 

Room Org. Enh. Org. Enh. 

Far-1 3.52 4.98 - - 
Near-1 4.06 5.04 - - 

Average 3.79 5.02 - - 
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