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ABSTRACT

In this paper we present a single channel speech enhance-
ment proposal in the autocorrelation domain. The main goal
of this work is to compensate for speech in reverberated en-
vironments. However the proposed method is designed to
handle any non-periodic corruption and it can carry out dere-
verberation and noise reduction at the same time. The work
is framed in the REVERB (REverberant Voice Enhancement
and Recognition Benchmark) challenge as part of the Speech
Enhancement task. Results are given in both, WSJICAMO
Corpus for the simulated data and the MC-WSJ-AV corpus
for the real recordings. Four quality measures have been
computed for the experiments: cepstral distance, speech-to-
reverberation modulation energy ratio, frequency weighted
segmental SNR and log-likelihood ratio. Also the compu-
tational time of the speech enhancement proposal has been
computed by measuring the Wall Clock Time. Promising re-
sults have been obtained both for the quality measures and
for the computational time. In quality measures, the proposal
achieves improvements until 57% using the proposed speech
enhancement procedure.

Index Terms— zero phase, autocorrelation, speech en-
hancement, reverberation, challenge.

1. INTRODUCTION

Reverberation is the collection of reflected sounds from sur-
faces in an enclosure which distort the structure of a speech
signal in both temporal as well as spectral domain. As a
result, in the presence of room reverberation the speech in-
telligibility is affected not only for hearing-impaired and el-
derly people but also for automatic speech recognition sys-
tems (ASR). Room reverberation is one of the major causes of
speech degradation and there has been an increasing need for
speech dereverberation in speech processing and communica-
tion applications. Although it has been studied for decades,
speech dereverberation remains a challenging problem both
from a theoretical and a practical perspective [1].

Previous works have addressed this issue of reverbera-
tion using a variety of methods. Some classification are done
based on the number of microphones, in single- and multi-
channel methods, while others consider the underlying math-

ematical principles. Source model- or signal features-based
speech dereverberation methods estimate the clean speech
by using the a priori knowledge about the structure of clean
speech signals and how the distortion due to reverberation
takes place. Linear-prediction (LP) residual enhancement
methods [2], harmonic filtering [3] and speech dereverbera-
tion using probabilistic models [4] are typical algorithms in
this group. On the other side, speech dereverberation could
be carried out from the perspective of signal separation in the
cepstral domain [5]. Cepstral liftering [6] and cepstral mean
subtraction [7] are the main techniques in this subset. Finally
the channel inversion and equalization is another speech dere-
verberation technique. In this case the idea is to estimate an
inverse filter of the acoustic impulse response. However the
problem with this technique is that the impulse response must
be blindly estimated which is a very challenging task for a
single channel case. Minimum mean square error (MMSE)
and least-squares algorithms can be used for the estimation.

In the end, all methods have a common objective: to per-
form an enhancement of the speech signal. The three main
axes of speech enhancement are echo cancellation, noise re-
duction and dereverberation [8]. However in practical ap-
plications the speech is often affected by several corruption
sources at the same time, for example in applications that ac-
quire samples using mobile devices, such as phones, PDAs
and laptops computers and for which hands-free distant talk-
ing operation is desirable. In these cases, speech samples
could be coexisting with environmental noises, cocktail party
effects and reverberation at the same time. In such cases, ap-
plying methods exclusively designed for dereverberation is
not enough for solving the speech enhancement problem.

In this work, we propose a single channel speech enhance-
ment method using zero phase transformation of the speech
signal. Zero phase procedure is a type of transformation in au-
tocorrelation domain, so share its properties. The zero phase
sequence energy is concentrated in the origin when the signal
spectrum is almost flat, while the sequence is turning peri-
odic when the signal spectrum comes periodic. This behavior
helps us to detect the reverberation location in autocorrelation
domain and allows us to remove it. Since noise is regularly
non-periodic, this method can work for several types of noise,
not only for reverberation case. The main advantage of this
method is that it is agnostic to the type of corruption affecting



the speech, and can handle dereveberation and noise reduc-
tion at the same time.

The approach is tested on the REVERB (REverberant
Voice Enhancement and Recognition Benchmark) challenge
[9]. This is a multidisciplinary evaluation part of the /EEE
SPS AASP challenge series' organized by a consortium of re-
search groups to share knowledge among speech researchers
for handling reverberant speech. The organizers provide a
common evaluation framework (datasets and evaluation met-
rics) for both tasks: speech enhancement (SE) and ASR tech-
niques in reverberant environments. This framework includes
the WSJCAMO Corpus [10] for the simulated data and the
MC-WSIJ-AV corpus [11] for the real recordings. The text
prompts of the utterances used in RealData and part of the
SimData are based on the WSJ 5K corpus [12]. The challenge
assumes the scenario of capturing utterances spoken by a sin-
gle stationary distant-talking speaker with 1-channel (1ch),
2-channel (2ch) or 8-channel (8ch) microphone-arrays in re-
verberant meeting rooms. The background noise is mostly
stationary and the Signal to Noise Ratio (SNR) is modest.
Speech enhancement challenge task consists of enhancing
noisy reverberant speech with single- or multi-channel speech
enhancement techniques and evaluating the enhanced data in
terms of objective and subjective evaluation metrics. The
ASR challenge task consists of improving the speech recog-
nition accuracy of the same reverberant speech.

This work presents the results of our participation in
the speech enhancement task of the challenge. Our pro-
posal needs to be carried out separately for each utterance
(utterance-based batch processing) with 1-channel section of
the database.

The paper is organized as follow: Section 2 presents
the zero phase transformation along with mathematical back-
ground and motivation for making the dereberveration in the
autocorrelation domain. Section 3 presents the proposed
speech enhancement method. In Section 4, the performance
of our proposal in the SE challenge task is presented. Also
the results for four objective quality measures of the speech
and computational cost of the speech enhancement system
are presented and discussed. Finally Section 5 provides some
conclusions of the work.

2. ZERO PHASE TRANSFORMATION AND
REVERBERATION

2.1. Zero phase version of the speech signal

Considering a speech production model with an all pole filter
that models the vocal tract. The output of the model is the
speech signal (n) and the resonance frequencies of the vocal
tract are the speech formants.

Uhttp://www.signalprocessingsociety.org/technical-
committees/list/audio-tc/aasp-challenges/

The zero phase version z,,(n) of the signal z(n) is com-
puted by first taking the absolute value of the Fourier Trans-
form representation of the signal and setting the phase to zero
(effectively removing it). Let the Fourier Transform [5] coef-
ficient (X (e/*)) of 2(n) be given by:

X(e7) = | X ()] 4X ™) (1)

The inverse Fourier transform of only the signal magnitude
then represents the zero phase signal in the time domain.
Mathematically, the zero phase version of 2(n) is given by:

z2p(n)
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2.2, Zero phase transformation and autocorrelation

The zero phase sequence could be generalized as:

z2p(n) = IDFT(|X ()7 3)

where 3 is an integer. If 5 = 2, we have the autocorrelation
function. The zero phase and autocorrelation are very simi-
lar transformations, the difference between them is only given
by the magnitude power, i.e the 3 coefficient. Therefore, the
frequency response of zero phase will be the square root of
the power spectral density of the signal and its dynamic range
will be less [13]. However despite the difference in the fre-
quency response, the zero phase has the same properties as
the autocorrelation, because zero phase transformation takes
place in autocorrelation domain.

In this work our focused is on the autocorrelation property
related with periodic signals: “The autocorrelation function
of a periodic signal is also periodic with the same period” [5].
Thus, the autocorrelation sequence has similar information in
each period. Voiced speech is quasi-periodic in a short-time
segment, i.e. in a frame. Therefore computing short-time
autocorrelation [15] in a frame allows us to obtain a periodic
pattern. Fig. 1 shows the x,,(n) of voiced speech segment
with 30 frames.

2.3. The reverberation in autocorrelation domain

Fig. 2 shows z,,(n) of a reverberated signal in a segment
with 30 frames is represented. The figure shows how the
application of the zero phase transformation to a reverbera-
tion signal results in a sequence with the energy concentra-
tion around the zerolag. Thus the autocorrelation sequence
does not have a periodic pattern.

3. THE PROPOSAL

3.1. Speech enhancement in autocorrelation domain

Our proposal is based on the previous work [14]. Where the
authors proposed a wide-band noise reduction method using
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Fig. 1. x.,(n) of a voiced speech segment with 30 frames.

zero phase signal, that was tested with some types of station-
ary and non-stationary noises: tunnel, motor, babble and clap
noise.

We are now going to use a similar approach for derever-
beration. The idea consists of computing the zero phase ver-
sion of the signal and once in the autocorrelation domain, to
replace the reverberated samples. Then the time sequence is
reconstructed from the zero phase estimated sequence return-
ing the enhanced signal. An overview of the method in the
following Fig. 3.

3.2. From time domain to autocorrelation domain

First z,,(n) is computed to obtain a representation in the au-
tocorrelation domain with 5 = 1. The signal is segmented in
frames of 32 ms with an overlap of 10 ms. In order to obtain
soft transitions between frames, a Hamming window is ap-
plied. Then, the zero phase transformation is implemented by
the Fast Fourier Transform (FFT) computation, keeping the
magnitude and saving the spectral phase. For the FFT com-
putation, 512 dimensions have been used. Finally the zero
phase sequence x.,(n) is obtained by computing the Inverse
FFT (IFFT) only with the magnitude.

3.3. Reverberated samples substitution

The reverberated samples substitution is computed for each
frame of the x,,(n) sequence. This process is based on:

1. the knowledge of the reverberation location in the au-
tocorrelation domain (section 2.3)

Xzp

30 0 frames

fitsize

Fig. 2. x,,(n) of a reverberation signal in a segment with 30
frames.

2. the autocorrelation property related with periodic sig-
nals (section 2.2)

As was shown in previous section, the reverberation is lo-
cated around the zerolag, i.e. in the first period of the zero
phase sequence. Thus the second period can be used for
replacing the corrupted part of the sequence, enhancing the
speech frame. From this, we use the period (7) of the voiced
speech, obtained as the inverse of the pitch. In this approach
the pitch is detected using the autocorrelation method [15].
The main peak in the autocorrelation function is at the zero-
lag location. The location of the next peak gives an estimate
of Tj, and the height gives an indication of the periodicity of
the signal. Therefore, a peak selection algorithm is used for
obtaining a pitch estimation.

Then the samples around zerolag are replaced by the sam-
ples around 7j,. The amount of reverberated samples define
the corrupted segment in the frame, and the number of sam-
ples to replace. This number is determined empirically after
the processing of a reverberated dataset 10 samples [14]. Fig.
4 presents a schema of the substitution process.

3.4. Time sequence reconstruction

Given the x.,(n) estimation (z.pest(n)) in autocorrelation
domain, the speech sequence reconstruction basically consists
of a process similar to that described in section 3.2. First,
the FFT of 512 dimensions is computed obtaining the magni-
tude of the x,,est(n) sequence. The phase previously saved
is coupled with the magnitude, conforming the new spectro-
gram. With the IFFT the signal is returned to the time do-
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Fig. 3. Overview of general speech enhancement method.
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Fig. 4. Diagram of the reverberated samples substitution pro-
cess. See text for details.

main and finally an overlap-add algorithm [16] is performed
for converting the separated frames to a temporal sequence
again. In this process an inverse Hamming window function
is applied for windowing compensation.

4. EXPERIMENTAL SETUP

For performing the SE task we followed the challenge guide-
lines in [9]. Since this work proposes a single channel
method, we use the database recorded with one channel. Eval-
uation of our proposal is carried out by computing the follow-
ing objective measures:

e Cepstrum distance (CD) [17]

e Speech-to-reverberation modulation ratio

(SRMR) [18]

energy

e Log lokelihood ratio (LLR) [19]

e Frequency-weighted segmental Signal to Noise Ratio
(FWSegSNR) [19]

CD is a distance between features in the cesptral domain.
It is calculated from the observed/enhanced signal and the
clean reference. The closer the target feature is to the refer-
ence the better is the quality of the signal. Therefore smaller
values indicate better speech quality. SRMR measures the
energetic relation of the speech and reverberation in the mod-
ulation spectral domain. In this case, larger values indicate
better speech quality. LLR represents the degree of discrep-
ancy between smoothed spectra of the target and reference
signals. It is computed over the Linear Prediction Coeffi-
cients (LPC) [20]. Smaller values indicate better speech qual-
ity. FWSegSNR is power relation between the speech and
noise, computed in the frequency domain. Here, larger values
indicate better speech quality.

Also, in order to measure and report the amount of time
that the speech enhancement system proposed spends to pro-
cess the database, the Wall Clock Time (WCT) was com-
puted. This is defined as the amount of time spent in carry-
ing out all the operations other than disk access for read and
write, including initialization, zero phase signal computation,
enhancement in autocorrelation domain and reconstruction of
the speech signal. The WCT was computed in both simulated
and recorded data. A reference enhancement code was used
to obtain a normalized WCT measure regarding the computer
machine features.



4.1. Quality measures results

Table 1 presents the results for the quality measures over the
development and evaluation datasets. Shadowed cells high-
light those results where our proposal outperforms the base-
line. Results for development dataset are a preview of the
evaluation dataset results, because the behaviour of the pro-
posed method with respect to the baseline is similar for both
datasets. That demonstrates the robustness of the proposed
method, indicating that the parameters are not tuned to some
specific dataset.

In general, that quality measures reflect that enhanced sig-
nals have better quality after the processing with the proposed
method as indicated by the LPC-based quality measure. Spe-
cially in SRMR and LLR, the proposed method outperforms
the baseline for both the development and evaluation dataset.
Considering the average of the results in all type of room con-
ditions, our proposal achieves the better performance for all
quality measures for LLR, with an improvement of 57%. Also
for SRMR and FwSNR the improvements are noticeable too,
performing 38.31% and 21, 27% better than the baseline.

On the other hand for cepstral domain, the results are not
accurate enough to outperform the baseline results, perform-
ing 10.32% worse than the baseline. That is because the en-
hancement is the result of processing in time domain without
consider the bounds of the corrupted segment in the frame,
causing aliasing in the spectral domain and consequently af-
fecting the cepstral representation. Future work will be re-
lated to developing some method for improving the speech
enhancement in the cepstral domain.

4.2. Computational cost results

Table 2 shows the computational cost of our proposed speech
enhancement system and the reference enhancement code us-
ing the WCT measure. The reference enhancement code was
provided by the REVERB challenge [9] organizers equal for
all participants, this performs beamforming with two micro-
phone signals. For computing the experiments we used a
computer machine with an Intel Core i3-2100 CPU that has
3.10 GHz x 4 processors, a memory capacity of 1.8 GiB and
a Linux Ubuntu 13.04, 64bit as operative system. Experi-
ments were executed using Matlab 2013, release A, version:
8.1.0.604.

Table 2. Computational cost results by the Wall Clock Time.

’ Method \ SimData \ RealData ‘
Reference | 268.4141 sec 38.06268 sec
Proposal | 251.5522 sec | 38.11760 sec

In this measure results are encouraging. In simulated data
the proposal performs faster than the reference, computing the
enhancement 16.8619 seconds before the reference. On real
data the reference performs slightly faster than our proposal,

with a difference of 0.05492 seconds. However summarizing
the results for all the dataset our proposal performs 16.8069
seconds faster than the reference.

5. CONCLUSIONS

In this work we proposed a single channel speech dereverber-
ation method. Its main advantage is that this method can be
used to deal with any non-periodic corruption, making it use-
ful for application in dereverberation and noise reduction at
the same time.

For the quality measures in spectral domain results are
encouraging, outperforming the baseline almost all the time.
However in cepstral domain results are not accurate enough
compared to the baseline. In the efficiency measure, despite in
real data the reference performs 0.05492 seconds faster than
the proposal, then in simulated data the proposal achieves the
computation 16.8619 seconds before the reference. Therefore
in general the proposal has less computational cost than the
reference.

Results are encouraging, however some improvement can
be made in the proposed method for obtaining better results.
Such as to developing some method for improving the speech
enhancement in the cepstral domain. On the other side, in
the substitution frame step, the autocorrelation peak selection
method for pitch detection was used. However for improv-
ing the performance, another more accurate pitch detection
algorithm can be applied.



Table 1. Quality measures results for SE task in development and evaluation test set.

(1]

(2]

(3]

(4]

(5]

SimData RealData
Quality measures Room1 Room2 Room3 Average Room1 Average
Near | Far | Near | Far | Near [ Far - Near | Far -
Baseline in development test set
Cepstral distance 196 | 2.65 | 458 | 5.08 | 420 | 4.82 3.88 - - -
SRMR 437 | 463 | 3.67 | 294 | 3.66 | 2.76 3.67 4.06 | 3.52 3.79
Log-likelihood ratio 0.34 | 0.38 | 0.51 | 0.77 | 0.65 | 0.85 0.58 - - -
Freq-weighted seg. SNR(dB) || 8.10 | 6.75 | 3.07 | 0.53 | 2.32 | 0.14 3.48 - - -
Proposal in development test set
Cepstral distance 322 | 362 | 458 | 5.00 | 476 | 5.04 4.35 - - -
SRMR 5.77 | 627 | 5.18 | 4.12 | 498 | 3.93 5.04 5.75 | 4.90 5.33
Log-likelihood ratio 0.25 | 031 | 036 | 057 | 050 | 0.66 0.44 - - -
Freq-weighted seg. SNR(dB) || 6.73 | 5.10 | 4.87 | 2.16 | 3.96 | 1.61 4.07 - - -
Baseline in evaluation test set
Cepstral distance 1.99 | 2.67 | 463 | 521 | 438 | 496 3.97 - - -
SRMR 450 | 458 | 3.74 | 297 | 3.57 | 2.73 3.68 3.17 | 3.19 3.18
Log-likelihood ratio 0.35 | 0.38 | 049 | 075 | 0.65 | 0.84 0.58 - - -
Freq-weighted seg. SNR(dB) || 8.12 | 6.68 | 3.35 | 1.04 | 2.27 | 0.24 3.62 - - -
Proposal in evaluation test set
Cepstral distance 324 | 359 | 453 | 5.03 | 476 | 5.15 4.38 - - -
SRMR 6.05 | 598 | 545 | 42 | 501 | 3.86 5.09 478 | 4.62 4.7
Log-likelihood ratio 026 | 031 | 034 | 054 | 05 | 0.65 0.43 - - -
Freq-weighted seg. SNR(dB) || 7.13 | 572 | 5.13 | 2.74 | 3.96 | 1.64 4.39 - - -
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