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ABSTRACT

This paper describes systems for the enhancement and recognition of
distant speech recorded in reverberant rooms. Our speech enhance-
ment (SE) system handles reverberation with blind deconvolution
using linear filtering estimated by exploiting the temporal correla-
tion of observed reverberant speech signals. Additional noise reduc-
tion is then performed using an MVDR beamformer and advanced
model-based SE. We employ this SE system as a front-end for our
advanced automatic speech recognition (ASR) back-end, which uses
deep neural network (DNN) based acoustic models and recurrent
neural network based language models. Moreover, we ensure good
interconnection between the SE front-end and ASR back-end using
unsupervised model adaptation to reduce the mismatch caused by,
for example, front-end processing artifacts. Our SE front-end greatly
improves speech quality and achieves up to a 60 % relative word er-
ror rate reduction for the real recordings of the REVERB challenge
data, compared with a strong DNN-based ASR baseline.

Index Terms— Linear prediction-based dereverberation, model-
based speech enhancement, DNN-based recognition.

1. INTRODUCTION

The use of distant microphones to capture speech remains chal-
lenging because noise and reverberation degrade the audible quality
of speech and severely affect the performance of automatic speech
recognition (ASR). Much research has been undertaken to tackle
the effect of noise. However, dealing with reverberation has re-
mained challenging because it has a long-term effect that covers
several analysis time frames, and it induces highly non-stationary
distortions. Consequently, mitigating reverberation requires ded-
icated approaches that exploit the long-term acoustic context and
use efficient models of reverberation [1]. Such approaches differ
fundamentally from conventional noise reduction techniques.

This paper presents our contribution to the REVERB challenge
for the enhancement and recognition of distant speech recorded in
reverberant rooms [2]. The REVERB challenge data cover various
reverberation conditions (reverberation times between 0.25 and 0.7
s) and also include a significant amount of noise. Dealing with such
severe conditions requires powerful dereverberation and noise reduc-
tion techniques. Our system combines speech enhancement (SE)
techniques as a front-end to reduce reverberation and noise, and a
state-of-the-art ASR back-end for optimal recognition performance.
The front-end of our system exploits the time and spatial correlation
of reverberant speech as well as clean speech spectrum character-
istics, using a combination of SE processes. Moreover, we ensure
good interconnection of the SE front-end and ASR back-end us-
ing unsupervised model adaptation to compensate for the mismatch
caused by, for example, front-end processing artifacts.

A central part of our SE front-end consists of robust blind decon-
volution based on long-term linear prediction, which aims at late re-
verberation reduction. The long-term effect of reverberation causes
the long-term time correlation of the reverberant speech that can be
exploited to estimate the late reverberation components using the
weighted prediction error (WPE) algorithm [3, 4, 5]. This approach
can be applied to single or multi-microphone cases and is very effec-
tive for reverberation suppression and robust to ambient noise. To
reduce ambient noise and potential remaining reverberation compo-
nents, we use a beamformer that employs the spatial correlation of
the microphone array signals [6]. Finally, we further reduce noise us-
ing SE methods that rely on pre-trained clean speech spectral mod-
els [7, 8, 9]. Both our dereverberation and beamforming techniques
employ linear filtering that guarantees low speech distortion. More-
over, model-based SE guarantees that the noise reduction is realized
while keeping the enhanced speech spectrum characteristics close to
that of clean speech. Consequently, our SE front-end greatly reduces
reverberation and noise and improves both speech perceptual quality
and ASR performance. Our SE front-end principally targets multi-
channel tasks (2 channels (2ch) and 8 channels (8ch)) but we also
provide some ASR results for the single channel (1ch) task.

To achieve good recognition performance, we use a state-of-
the-art ASR back-end that consists of deep neural network (DNN)
acoustic models (AMs) [10, 11] and recurrent neural network (RNN)
based language models (LMs) [12, 13]. One issue with the RE-
VERB challenge is that the provided multi-condition training data
(trainData) is fairly similar to the simulated test data (SimData), but
quite different from the real recordings (RealData) that are more se-
vere in terms of noise and reverberation. DNNs are known to per-
form poorly when test conditions differ significantly from the train-
ing conditions [14]. Consequently, increasing the performance on
the RealData set is particularly challenging. We tackle this issue by
increasing the robustness of the DNNs to unseen conditions. Sev-
eral approaches have been proposed for increasing the robustness
of DNNs [15]. Here we simply augment the acoustic variations of
the trainData set to expose the DNN-based AM to a larger variation
of training samples. Moreover, we used unsupervised AM adapta-
tion [16] to further compensate for the mismatch between test and
training conditions as well as the effect of the processing artifacts
introduced by the SE front-end.

We demonstrate the efficiency of the proposed front-end and
back-end techniques with the REVERB challenge data [2], both for
SE and ASR tasks. In particular, with our best set-up we achieve
average word error rates (WER) of 4.2 % and 9.0 % for the Sim-
Data and RealData of the evaluation set of the challenge, respec-
tively. Although we use a strong baseline that has already achieved
high recognition performance with unprocessed distant speech, we
obtain a large additional improvement using the proposed front-end
(up to 60% relative WER reduction). This demonstrates that well
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Fig. 1. Schematic diagram of the proposed system for enhancement
and recognition of reverberant speech.

engineered SE front-ends still have a large impact when using DNN
AMs, which may contrast with the results of some previous stud-
ies [15].

In the remainder of this paper, we provide a brief overview of
our proposed system in Section 2, and discuss the components of the
SE front-end and ASR back-end in Sections 3 and 4, respectively.
Detailed experimental results are provided in Section 5. Finally, we
conclude the paper in Section 6.

2. SYSTEM OVERVIEW

Figure 1 shows a schematic diagram of the proposed (a) SE front-end
and (b) ASR back-end for 1ch, 2ch and 8ch set-ups. Note that we
focus on the multi-microphone cases and the 1ch front-end is used
only for recognition. The system consists of the following elements.
SE front-end

o Dereverberation based on long-term linear prediction: We
use the WPE algorithm to reduce late reverberation. WPE in-
puts Ich, 2ch and 8ch observed signals and outputs the same
number of dereverberated signals. WPE operates in the ut-
terance batch mode. The real time factor (RTF) ! of WPE is
about 0.2, 0.5 and 2.8 for Ich, 2ch and 8ch set-ups, respec-
tively.

e Beamformer: Ambient noise and potential remaining rever-
beration components are reduced using a minimum variance
distortionless response (MVDR) beamformer. The MVDR
beamformer inputs the multi-channel signals dereverberated
with WPE (2ch/8ch) and outputs a single-channel enhanced
speech signal. MVDR operates in the utterance batch mode.
The MVDR run time is negligible with RTFs of 0.01 and 0.03
for 2ch and 8ch set-ups, respectively.

o Model-based SE: We investigated two model-based SE ap-

proaches to further reduce noise, namely dominance based
locational and power-spectral characteristics integration
(DOLPHIN) and model-based SE with minimum mean
squared error (MMSE) estimates. Both approaches use
pre-trained spectral models of clean speech, trained using the
clean speech training data set.
DOLPHIN uses both the multi-channel output of WPE and
the single channel output of MVDR to perform enhancement.
It operates in the full batch mode (using all the data from a
given test condition). The RTFs of DOLPHIN are about 6.1
and 10.5 for 2ch and 8ch set-ups, respectively.

I All RTFs are calculated on modern CPUs (e.g. Intel Xeon, 2.6 GHz,
using a Linux operating system)

MMSE model-based SE uses only the output of the MVDR
beamformer and operates in the utterance batch mode. Its
RTF is about 0.5.

ASR back-end: We recognize the output of WPE for 1ch, and DOL-
PHIN for 2ch/8ch?. The RTF of the ASR decoding is about 6.

o Acoustic model: we used state-of-the-art DNN-based AMs.
To create robust AMs, we augmented the amount of multi-
condition training data to increase the acoustic conditions
seen during training.

o Unsupervised model adaptation: The DNN AMs are adapted
to the test environment to reduce the mismatch between the
test and training conditions. Unsupervised adaptation is per-
formed in the full batch mode to obtain a sufficient quantity
of data to reliably estimate the AM parameters.

o Language model: we employed a state-of-the-art RNN-based
LM with an on-the-fly rescoring technique to allow fast one
pass decoding.

The following sections describe each component of our pro-
posed system in more detail.

3. SPEECH ENHANCEMENT FRONT-END

3.1. Dereverberation based on long-term linear prediction

Dereverberation is the key component of our proposed SE front-
end. We performed dereverberation based on long-term linear pre-
diction in the short-time Fourier transform (STFT) domain by us-
ing the WPE algorithm, which was first described in [3] for a two-
microphone one-output case and generalized later in [4, 5]. The na-
ture of this algorithm and the relationship with other approaches are
discussed in [1]. It is also noteworthy that this algorithm has been
shown to improve the meeting transcription performance of DNN
AMs trained on nearly matched training data [17]. In the following,
we first describe the single-channel version of the algorithm and then
extend it to the M-input M-output case to highlight the commonali-
ties and differences between the single and multi-channel versions.

Since dereverberation processing acts on STFT coeflicients, a
single-channel observed signal y(#), which is distorted by reverber-
ation and background noise, is transformed into a set of (complex-
valued) STFT coefficients (y,)u=1,.. ;v With N being the number of
time frames in an utterance. We have omitted a frequency bin index
since different frequency bins are processed independently. The goal
of dereverberation is to obtain a set of STFT coefficients (x;),=1,... v,
which is less reverberant than the input.

With the long-term linear prediction approach, dereverberation
is achieved using a frequency-dependent linear prediction filter as
follows:

Tt
Xn =Yn— Z gf—yn—r, (1)
=T,

where * stands for complex conjugation. With this formulation, the
reverberant noise contained in y, is predicted from the past frames
of observed speech, y,—7 ,*-,yn—7-, and then subtracted from y,
to obtain an estimate of the dereverberated STFT coefficient. T, is
normally set at 3 while 7 has a large value to deal with long-term
reverberation (between 7 and 40). G = (gr,, - ,gr,) is the set of
prediction coefficients to be optimized, which is defined indepen-
dently for each frequency bin. It is known that using a 7, value

2MMSE was not used for recognition as it performed slightly worse than
DOLPHIN with our DNN-based ASR back-end.



greater than 1 prevents the processed speech from being excessively
whitened while it leaves the early reflection distortion in the pro-
cessed speech [18].

Using the concept of WPE minimization [5], the linear predictor
G can be optimized to minimize the following objective function,
which can be derived assuming that the prediction error is Gaussian
with a time-varying variance (6,) corresponding to the short-time
power spectrum of the source at a given frequency:

2
N _y It 5
Yn— 2 =1, 97Yn-1
Fi=) i +1og6y |, )
O
n=1
where ® = (61,---,6y) is a set of auxiliary variables that needs

to be optimized jointly with G, which leads to interleaved up-
dates of G and ®. Each 6, is updated simply by calculating

T
On = \yn— ZT;TL g;ynfr
lgr, .- ,gTT]T, where the superscript T indicates a non-conjugate

transpose operation, G can be updated as g = R™1r, where R and r
are given by the following equations:

2
for a fixed G. Using notation g =

-

N -1, yf—n N Gt Y
R_ZT, r=>% i 3)
n=1 n=1
with the superscript H representing a conjugate transposition and
Jn being defined as i, = [y, - ,yn—TTJrTL]T. Two or three iterations
provide good estimates and can be executed at a small computational
cost.
The above-described single-channel dereverberation algorithm
can be easily extended to M-microphones, with M > 2, by rewriting
(1) in the form of a multi-channel linear prediction as follows:

Iy
Tp=Yn— Z G‘z[:Iyn—Tv 4)
=T,
where y, denotes an M-dimensional vector of the STFT coeflicients
obtained from the M microphones and x,, denotes a dereverberated
STFT coefficient vector. Each prediction coefficient g, has been
changed to an M-by-M prediction matrix G, to accept the multi-
ple inputs and produce the same number of outputs.
The objective function for minimization must also be modified
accordingly. [5] derives the following objective function, which re-
duces to the single-channel objective function (2) when M = 1:

2
N T;
Fy= Z Yn— Z Giyn—-|| +logdetA,|, 5)
n=1 =T, A,

where, for vector & and matrix A, ||.'ch||%X =" A1z, [5] describes
how to efficiently optimize the set of prediction matrices so that (5)
is (locally) minimized.

3.2. MVDR Beamforming

To suppress background noise (and possibly residual reverberation),
MVDR beamforming was applied to the dereverberated signals for
the multi-microphone set-up. As a result we obtain a single-channel
speech signal, which is less distorted by background noise and re-
verberation than the input dereverberated signals.

In this work, the MVDR beamformer was implemented as de-
scribed in [6]. This implementation is suitable for the REVERB
Challenge task since it does not require explicit transfer functions
between a target speaker and microphones, which change from ut-
terance to utterance in the task being considered.

Instead of relying explicitly on the transfer functions, our beam-
former needs a noise covariance matrix for each frequency bin.

These statistics can be computed from the initial and final 10 frames
of each utterance, from which speech sounds are assumed to be ab-
sent. See [6] (in particular, Eq. (24)) for details of the beamforming
algorithm.

3.3. DOLPHIN

DOLPHIN is a model-based multi-channel SE technique that we use
here to reduce residual ambient noise. DOLPHIN efficiently com-
bines conventional direction-of-arrival (DOA) [19, 20] feature based
enhancement [21] and spectral feature based approaches through a
dominant source index (DSI) that indicates whether noise or speech
is dominant at each time/frequency bin. The algorithm is detailed
in [7]. Here we briefly explain its use with the REVERB challenge
data.

DOLPHIN uses DOA feature models and spectral models of
speech and noise to determine the DSI by using the expectation-
maximization (EM) algorithm. The DOA feature models consist of
a mixture of Watson distributions, whose parameters are learned on a
per utterance basis. The speech DOA feature model is learned from
the dereverberated speech DOA obtained from the WPE output. To
obtain the noise DOA feature model, we assume that ambient noise
is diffusive and therefore the distribution of the DOA features of the
ambient noise is approximately the same as that of late reverberation.
Given this assumption, we can approximate the noise DOA feature
model parameters using the estimated late reverberation components
that are obtained as a side output of WPE.

The speech and noise spectral models consist of Gaussian mix-
ture models. The speech spectral model is trained using the clean
speech training data provided by the challenge. Then to reduce the
mismatch between training and test conditions, unsupervised chan-
nel adaptation is performed using all the utterances of a given test
condition (full batch mode) following the procedure described in [7].
We use the MVDR output to calculate the adaptation parameters.
The noise spectral model parameters are estimated on a per utterance
basis. Finally, we perform noise reduction on the MVDR output.

DOLPHIN is used for 2ch and 8ch SE and in our SE front-end
for recognition.

3.4. Model-based SE with MMSE estimates

In this section, we briefly describe the principle of our proposed sin-
gle channel model-based SE with the joint processing of noise model
estimation and speaker adaptation [8, 9], which we use here to re-
duce residual ambient noise remaining in the MVDR output signal.
The method provides an alternative to DOLPHIN and has the merit
of operating in the utterance-batch mode.

Most techniques for model-based SE, e.g. vector Taylor series
(VTS) [22], create a noisy speech observation model by combining
clean speech and noise models through an approximated observa-
tion model. With such an approximated observation model, accurate
noise model parameter estimation is a challenge. In addition, varia-
tion of the speaker characteristics requires speaker adaptation of the
clean speech model to ensure good noise suppression performance.
However, the joint estimation of noise and speaker adaptation param-
eters is computationally intractable due to the direct unobservability
of clean speech and noise signals with conventional techniques.

To overcome these issues, we propose a way of achieving joint
unsupervised processing by using MMSE estimates of clean speech
and noise [8]. First a rough observation model is created using VTS
approximation to combine speech and noise models. This observa-
tion model is used to obtain MMSE estimates of the clean speech



and noise signals. These signals are then used to calculate precisely
speech and noise statistics that can be employed to refine the obser-
vation model. This recursive procedure is formulated with the EM
algorithm. Ten iterations of the EM algorithm are generally suffi-
cient to obtain good performance.

MMSE estimates of clean speech and noise include some es-
timation errors that often degrade the parameter estimation accu-
racy. Namely, in a period with a high segmental signal to noise ra-
tio (SNR), the MMSE estimates of the clean speech signal become
highly reliable, whereas the MMSE estimates of the noise signals
become unreliable, and vice versa. Thus, it is desirable to eliminate
unreliable estimates if we are to obtain accurate parameters for the
noise model and speaker adaptation. To deal with this problem, we
employ a reliable data selection method based on voice activity de-
tection that consists of segmental SNR-based feature and k-means
clustering [9]. This process implies that the model-based MMSE SE
approach operates in the utterance batch mode.

4. ASR BACK-END

4.1. DNN-based acoustic model

We used a conventional context-dependent (CD) DNN-HMM based
AM, obtained with layer-wise RBM pre-training followed by fine-
tuning using backpropagation [10, 11]. We used log mel filter-bank
coefficients as DNN input features. The multi-condition training
data provided by the REVERB challenge are similar to the Sim-
Data set, but present a large mismatch with the RealData set. In
particular the SNR of the training data is fixed at 20 dB. Therefore,
obtaining good performance on the RealData set is a challenge. We
address this issue by extending the training data set to cover more
environmental variations, i.e. by using multi-condition training data
obtained with various SNR levels without using any SE front-end.
Here, to obtain a robust AM, we do not use the SE front-end to pre-
serve the acoustic variations during training as it has been shown that
enhancing the training data may degrade the DNN performance [15].

4.2. Unsupervised AM adaptation

There is a large mismatch between the training and testing condi-
tions because of the difference in the acoustic conditions and also
because we do not use an SE front-end during training. Unsuper-
vised AM adaptation can be used to mitigate such a mismatch. There
have been only few investigations of the adaptation of DNN-based
AMs [23, 16, 24]. A simple but efficient approach consists of per-
forming a few additional fine tuning steps (with backpropagation) on
the adaptation data, using labels estimated from a first recognition
pass [16]. This technique has been investigated for speaker adap-
tation where it was demonstrated that retraining the whole network
would provide better performance improvement compared with re-
training only the input or the output layers. We propose using a
similar approach for environmental adaptation. Here we perform un-
supervised full batch adaptation (using all the data from a given test
condition), which implies environmental adaptation with only lim-
ited speaker adaptation as the adaptation data cover several speak-
ers. In contrast to [16], for environmental adaptation, we confirmed
experimentally the superiority of adapting only the input layer.

4.3. RNN-based language modeling

Diverse acoustic environments induce an acoustic mismatch be-
tween a training set and evaluation sets. In such a case, an improved
language modeling technique is expected to be helpful since the

linguistic characteristics can be considered invariant with respect to
acoustic environment variations if the use case of the system does
not change.

RNN-LMs [12] enhanced with a one-pass decoding technique
based on an on-the-fly rescoring strategy [13] is a good choice for
improving LM accuracy since it can accurately capture the long-
term dependency between words without greatly increasing compu-
tational costs. To estimate the RNN-LMs, we prepared text data sets
by extracting sentences from the WSJ text corpora [25] distributed
by the Linguistic Data Consortium (LDC), while ensuring that the
sentences in the evaluation and development sets were not employed.
The training data set for RNN-LM consists of 716,951 sentences.

Following [12], we interpolated the optimized RNN-LMs with
conventional trigram LMs to enhance the word prediction perfor-
mance. We confirmed that the RNN-LMs were capable of greatly
reducing perplexities, i.e. the development set perplexities of the tri-
gram LM, the RNN-LM, and the interpolated LM were 56.24, 60.83,
and 41.73, respectively. Thus, the use of the improved LMs based
on RNN-LMs is expected to be advantageous for reverberant speech
recognition.

5. EXPERIMENTS

5.1. Experimental settings

SE Front-end: For WPE, we set T, =3 and 7+ = 40,30, 7 for 1ch,
2ch and 8ch, respectively. We used a window length of 32 ms and a
frame shift of 8 ms for both WPE and MVDR. The settings for DOL-
PHIN are described in [7] Section V. B. 2). The settings of MMSE
are similar to those in [9] Section 5.2. The results were evaluated
in terms of cepstral distance (CD), speech to reverberation modu-
lation energy ratio (SRMR), log likelihood ratio (LLR), frequency-
weighted segmental signal to noise ratio (FWSegSNR) and PESQ.
ASR back-end: We used two different CD-DNN-HMM based AMs,
one trained with the multi-condition training data provided by the
challenge (AM 1), and one using extended training data (AM 2).
The extended training data consisted of the WSJCAMO [26] clean
training data, WSJCAMO training data recorded with the second mi-
crophone (table microphone) and noisy and reverberant training data
obtained with the script provided by the REVERB challenge to gen-
erate multi-condition training data but by setting the SNR at 10 and
15 dB in addition to the original 20 dB. This extended data set is
about 5 times the size of the REVERB challenge training data set
(about 85 hours). It consisted of the same utterances and any vari-
ation originated solely from the acoustic environment. Note that all
the elements to create the extended training data set were released
with the challenge data.

The features used for ASR consist of 40 log mel filter-bank co-
efficients, with their delta and acceleration (120 coeflicients in total).
We used 5 left and 5 right context windows as the DNN input, corre-
sponding to a total of 1320 visible input units. There were 7 hidden
layers each with 2048 units. There were 3129 output HMM states.
For the training of the DNN we used HMM state alignment obtained
using the clean training data with an HMM-GMM based ASR sys-
tem trained with the ML criterion. The validation set used for the
training of the data was created by randomly selecting 5 % of the
training data.

We investigated two types of LMs. The first one consisted of
the WSJ tri-gram LM that is distributed with the American version
of WSIJ. The second LM was an RNN-LM. The interpolation coeffi-
cient for the RNN-LM was set at 0.5. For decoding, we used an LM
weight of 11 and a relatively large search beam of 400 for optimal
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Fig. 2. Spectrograms for an utterance from the RealData evaluation
set.

ASR performance.

For unsupervised batch adaptation of the first layer of the DNNs,
we performed a few backpropagation iterations assuming that the
labels obtained from a first recognition pass were true references.
The learning rate was set at 0.0005 and the number of iterations at
about 15 epochs.

All the parameters of the SE front-end and ASR back-end were
tuned using the development set.

5.2. Results

A summary of the results obtained on the development set can be
found in Appendix 7. In the following, we discuss the results for the
evaluation set.

5.2.1. SE results

We used the 2ch and 8ch set-ups for the SE task. Table 1 shows the
results obtained with the SE objective measures for the evaluation
set. Note that the front-end was essentially tuned for optimal ASR
performance using the DNN-based ASR back-end, and thus the re-
sults may not be the best for the SE task.

All the systems operate in the utterance batch mode, except for
DOLPHIN, which operates in the full batch mode. The results we
submitted for the REVERB challenge consist of those for system III
(2ch) and VII (8ch) for the utterance batch mode, and IV (2ch) and
VIII (8ch) for the full batch mode. The results in Table 1 confirm
that each component of the SE front-end consistently improves per-
formance. The results for DOPLHIN and MMSE are somewhat sim-
ilar in terms of objective measures. However, an informal listening
test revealed that MMSE tends to reduce more noise than DOLPHIN
at the expense of slightly more perceived artifacts.

For the most severe acoustic conditions (i.e., room3 far and Re-
alData), we noticed that the presence of noise affected the derever-
beration performance and that in some cases it resulted in the rever-
beration tail remaining perceivable after processing.

Figure 2 shows the spectrograms of part of an utterance of the
RealData evaluation set, processed with our 8ch set-up. Due to space
constraints we have only provided the most relevant spectrograms.
Figure 2-c) clearly reveals the strong dereverberation effect of WPE.
The remaining ambient noise is reduced significantly using MVDR
and DOLPHIN as shown in 2-d).

Table 2. Mean WER for the evaluation test set using the HTK base-
line system with an acoustic model trained on clean data. Adap.
means unsupervised batch adaptation using constrained maximum
likelihood linear regression (CMLLR). The results are shown only
for systems submitted to the SE task, i.e. 2ch and 8ch set-ups.

l [ Proc. [ Adap. “ SimData [ RealData ]
0 Distant - 51.7 88.5
X 39.2 81.5
I WPE(2ch) - 28.2 65.8
X 19.3 52.7
I I+MVDR - 23.6 58.0
X 17.2 44.4
I 1I+MMSE - 20.3 46.2
X 16.9 39.7
v 1I +DOLPHIN - 22.1 524
X 17.1 39.8
\Y% WPE (8ch) - 25.6 61.2
X 18.0 482
VI V +MVDR - 17.6 41.9
X 14.5 32.6
vl VI + MMSE - 17.2 35.4
X 14.6 31.0
VIII | VI+DOLPHIN | - 17.1 37.4
X 14.3 29.5

In addition to the objective measures, in Table 2 we also provide
the WER for the evaluation obtained with the HTK [27] baseline
system using clean AMs. Table 2 reveals the potential improvement
of the SE front-end with a clean AM, but this should be interpreted
carefully since the SE front-ends were not tuned for optimal WER
performance with this recognizer.

5.2.2. ASR results

Table 3 shows the WER for the evaluation set for the 1ch, 2ch and
8ch ASR systems described in Figure 1. All systems operate in
the utterance batch mode except for those using DOLPHIN and the
adaptation, which operate in the full batch mode. The results we
submitted for the REVERB challenge consist of those for system I-d
(1ch) II-d (2ch) and VI-d (8ch) for the utterance batch mode, and I-
e (1ch) IV-e (2ch) and VII-e (8ch) for the full batch mode. The other
results are provided to attest to the contribution of each component
of our proposed system. In particular, the results with AM 1 are
given for comparison with other participants’ results but should be
interpreted carefully since the parameter tuning was not performed
with this AM.

Table 3 also shows the WER of clean speech for SimData and
that of speech recorded using headset and lapel mics for RealData.
The headset recordings are almost clean and consequently the perfor-
mance difference between clean (SimData) and headset (RealData)
speech seems to indicate that the mismatch between the training data
and the RealData set originates not only from noise and reverbera-
tion but also from other factors related to the spoken utterances such
as speaking style.

The results in Table 3 demonstrate that dereverberation using
WEPE plays an essential role in our SE front-end. Indeed, WPE alone
is responsible for relative WER improvements of up to 22%, 33%
and 38% for 1ch, 2ch and 8ch, respectively. We observe a larger per-
formance improvement when using multi-microphone processing.
For dereverberation, most of the performance gain in terms of WER
is already observed when using two microphones, but MVDR and
DOLPHIN work particularly well when using eight microphones.
Note that for moderate reverberation and noise conditions (i.e. Room



Table 1. SE scores for the evaluation set. Systems submitted to the SE task of the REVERB challenge are highlighted in bold fonts. Numbers

with an asterisk are best scores.

SimData RealData
Room1 Room?2 Room3 Ave Rooml1 Ave
Near Far Near Far Near Far - Near Far -
0 Distant CD 1.99 2.67 4.63 5.21 4.38 4.96 3.97
SRMR 4.50 4.58 3.74 2.97 3.57 2.73 3.68 3.17 3.19 3.18
LLR 0.35 0.38 0.49 0.75 0.65 0.84 0.58
FWSegSNR 8.12 6.68 3.35 1.04 227 0.24 3.62
PESQ 2.14 1.61 1.40 1.19 1.37 1.17 1.48
I WPE(2ch) CD 2.04 3.66 4.38 4.86 3.93 4.32 3.66
SRMR 4.68 5.12 4.38 4.48 4.44 3.93 4.50 4.29 4.68 4.48
LLR 0.34* 0.33 0.46 0.60 0.51 0.58 0.47
FWSegSNR 8.59 8.09 5.17 3.29 4.35 2.60 5.35
PESQ 2.50 1.99 1.77 1.46 1.77 1.43 1.82
I I+MVDR CD 1.84 221 3.90 4.46 3.46 3.92 3.30
SRMR 4.85 5.49 4.47 4.95 4.61 4.35 4.79 5.01 5.40 5.21
LLR 0.34* 0.35 0.42 0.52 0.50 0.55 0.45
FWSegSNR 9.50 8.89 6.58 4.73 5.42 3.60 6.45
PESQ 2.93 2.26 2.05 1.59 2.12 1.57 2.09
I II+MMSE CD 1.87 2.05 2.26 2.93 2.18 2.73 2.34
SRMR 5.00 5.66 4.80 5.32 491* 4.64 5.06 6.55 6.71 6.63
LLR 0.38 0.39 0.32 0.40 0.48* 0.50 0.41*
FWSegSNR 10.54 10.55% 11.65 9.72 9.95% 8.79 10.20
PESQ 3.20 2.48 2.67 1.79 2.71 1.75 243
v II +DOL CD 1.55% 1.94* 3.01 3.68 2.60 3.13 2.65
SRMR 4.88 5.53 4.64 5.21 4.75 4.58 4.93 6.04 6.26 6.15
LLR 0.35 0.35 0.38 0.48 0.49 0.52 0.43
FWSegSNR 11.18% 10.53 8.72 6.68 7.82 5.94 8.48
PESQ 3.11 2.41 2.34 1.72 2.41 1.71 2.28
v WPE (8ch) CD 1.97 2.35 4.37 4.86 3.90 431 3.63
SRMR 4.67 5.05 4.38 4.93 4.46 4.35 4.64 4.32 4.79 4.55
LLR 0.34* 0.32% 0.48 0.57 0.50 0.57 0.46
FWSegSNR 8.74 8.30 5.02 3.61 4.36 2.86 5.48
PESQ 2.56 2.18 1.78 1.52 1.80 1.51 1.89
VI V +MVDR CD 1.82 2.14 3.14 3.70 2.73 3.16 2.78
SRMR 5.31 6.05 4.57 5.49 4.72 4.96 5.18 6.00 6.28 6.14
LLR 0.40 0.43 0.38 0.41 0.50 0.51 0.44
FWSegSNR 10.09 9.39 8.39 6.96 7.07 5.81 7.95
PESQ 3.21 2.81 2.50 1.98 2.64 2.13 2.54
VI VI+ MMSE | CD 2.09 2.25 2.13* 2.47% 2.18 2.36* 2.25%
SRMR 5.45% 6.20% 4.82% 5.82% 491* | 5.16% 5.39* 7.31% | 7.37* 7.34%
LLR 0.44 0.48 0.31* 0.34%* 0.50 0.49* 0.43
FWSegSNR 9.97 9.56 11.99* 10.82* 9.90 9.60% 10.31*
PESQ 3.33* 2.94% 2.97* 2.23% 3.05% | 2.39% 2.82%
VIII | VI+DOL CD 1.67 1.97 2.43 3.10 2.14% 2.53 2.31
SRMR 5.34 6.08 4.67 5.64 4.80 5.08 5.27 6.98 7.09 7.04
LLR 0.45 0.47 0.38 0.40 0.56 0.54 0.47
FWSegSNR 10.88 10.30 10.36 8.61 9.23 8.13 9.58
PESQ 3.23 291 2.72 2.12 2.85 2.33 2.69

1 near), optimal performance is already achieved with a single mi-
crophone. We also confirm that the use of the extended training data
set, the RNN-LM and unsupervised AM adaptation consistently im-
proves performance. Although the parameters for adaptation (learn-
ing rate, number of iterations, etc.) were tuned on the development
set, we obtained a larger improvement with the evaluation set than
with the development set, since the evaluation set contains a larger
number of data.

It is noteworthy that the ASR performance of our best system is
almost equivalent to that of speech recorded with a close talking mic
(lapel-mic). Nevertheless, the performance gap between enhanced
speech and clean/headset speech is much smaller for SimData than
for RealData, suggesting that room remains for improvement with
the SE front-end if we are to further reduce the WER for RealData.

Using DNN with RNN-LM and adaptation, we have already
been able to obtain relatively high recognition performance for dis-
tant speech even without any SE front-end. Nevertheless, our best
proposed SE front-end provided a large additional improvement in
performance, namely relative WER reduction of about 30 % and 60

% for SimData and RealData, respectively. This demonstrates that
well designed speech enhancement front-ends can have a great im-
pact on recognition performance when using DNN-based ASR espe-
cially in multi-microphone processing scenarios.

6. CONCLUSION

In this paper we proposed an SE and ASR system for speech
recorded in noisy and reverberant rooms. We showed that dere-
verberation plays a key role in improving the recognition of distant
speech. Moreover, by combining a dereverberation algorithm, ad-
vanced noise reduction techniques and a state-of-the-art ASR system
we obtained excellent performance for both SE and ASR tasks.

7. APPENDIX

Tables 4 and 5 show the results on the development set for the SE
and ASR tasks, respectively.



Table 3. WER for the evaluation set. The systems submitted to the REVERB challenge are highlighted in bold fonts. Numbers with an
asterisk are best scores.

(1]

[2]

[4]

[3]

SimData RealData
Proc. AM Adap. RNN-LM Room1 Room?2 Room3 Ave Room1 Ave.
Near [ Far Near [ Far Near [ Far - Near [ Far -
Clean / 2 - X 33 35 3.8 35 7.5 6.2 6.9
Headset mic 2 X X 3.4 35 39 3.6 6.5 53 59
Lapel mic 2 - X - - - - - - - 9.7 10.0 9.8
2 X X - - - - - - - 8.2 8.3 8.3
0-a Distant 1 - - 59 6.6 7.9 12.2 8.7 13.2 9.1 32.6 323 325
b 2 - - 5.1 5.6 6.7 11.5 7.6 11.6 8.0 27.1 27.9 27.5
c 2 X - 4.7 5.4 6.4 10.3 7.5 10.9 7.5 22.1 247 234
d 2 - X 4.1 4.7 55 9.7 59 9.9 6.6 25.7 26.9 26.3
e 2 X X 3.8 4.4 53 8.5 5.8 9.5 6.2 21.1 233 222
I-a WPE (Ich) 1 - - 6.2 6.0 73 10.6 7.7 10.4 8.0 279 27.7 27.8
b 2 - - 49 52 6.4 9.3 6.8 8.9 6.9 214 22.1 21.7
c 2 X - 4.5 4.8 6.1 8.7 6.7 8.2 6.5 18.1 19.9 19.0
d 2 - X 3.9 4.2 5.0 7.7 5.7 7.3 5.6 20.0 20.6 20.3
e 2 X X 3.5% 4.0 4.6 6.8 5.1 7.2 5.2 16.4 18.4 17.4
II-a WPE (2ch) 1 - - 6.6 6.3 7.1 8.6 7.6 8.8 7.5 25.7 253 25.5
b 2 - - 49 5.1 6.1 7.5 6.5 7.4 6.3 18.5 19.1 18.8
c 2 X - 4.6 4.8 5.9 7.1 6.3 7.0 5.9 15.5 16.7 16.1
d 2 - X 3.9 4.0 4.9 5.8 54 6.1 5.0 17.7 17.4 17.5
e 2 X X 3.6 3.6 4.6 5.6 5.0 6.0 4.7 14.6 15.1 14.9
II-a II + MVDR 1 - - 6.5 6.5 6.8 7.8 6.7 7.6 7.0 223 22.1 222
b 2 - - 49 5.0 6.1 7.0 6.3 6.6 6.0 16.1 16.6 16.4
c 2 X - 4.5 4.7 5.6 6.4 6.0 6.4 5.6 13.6 15.2 144
d 2 - X 4.1 4.0 4.5 5.6 5.0 5.6 4.8 14.9 15.2 15.0
e 2 X X 3.6 3.7 42 5.1 4.8 5.2 4.4 124 134 12.9
IV-a IIT + DOL 1 - - 6.6 6.6 6.6 7.7 6.1 7.1 6.8 21.1 21.2 21.2
b 2 - - 4.7 5.1 59 6.4 6.0 6.7 5.8 16.2 16.6 16.4
c 2 X - 4.5 4.6 55 6.3 5.7 6.4 5.5 13.8 15.2 14.5
d 2 - X 4.1 4.0 4.5 54 5.0 55 4.8 14.8 15.9 15.4
e 2 X X 3.7 3.6* 4.2 5.1 4.8 5.2 4.4 12.0 13.4 12.7
V-a WPE (8ch) 1 - - 6.3 6.5 73 7.8 73 8.8 7.3 252 242 24.7
b 2 - - 4.6 5.1 6.3 6.7 6.1 6.8 6.0 17.2 18.5 17.8
c 2 X - 4.4 4.8 6.0 6.4 5.9 6.7 5.7 144 15.6 15.0
d 2 - X 4.0 4.2 4.8 52 52 5.8 4.9 16.6 17.2 16.9
e 2 X X 3.7 3.7 4.4 5.1 4.6 5.8 4.5 13.4 142 13.8
VI-a V + MVDR 1 - - 7.0 7.0 6.1 6.7 6.6 7.2 6.8 17.2 17.4 17.3
b 2 - - 4.6 5.0 52 5.9 5.7 6.2 54 12.2 14.0 13.1
c 2 X - 4.6 4.8 5.0 5.5 5.6 6.0 53 10.8 11.7 11.2
d 2 - X 4.0 4.0 3.8% 4.5% 4.5 4.9 4.3 114 12.4 11.9
e 2 X X 3.7 3.8 39 4.5% 4.3% 5.0 4.2% 9.8 10.3 10.0
VII-a VI + DOL 1 - - 73 7.5 6.6 7.1 6.9 7.2 7.1 154 16.3 15.8
b 2 - - 4.6 4.9 53 5.8 6.0 6.0 54 12.0 13.7 12.8
c 2 X - 4.5 4.8 52 54 5.7 5.9 5.2 10.1 114 10.8
d 2 - X 4.0 4.1 4.0 4.5% 4.3% 4.8% 43 10.0 12.0 11.0
e 2 X 3.7 4.0 4.0 4.5% 4.4 4.8*% 4.2% 8.8% 9.3% 9.0*
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