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ABSTRACT

This paper presents the TUM contribution to the 2014 REVERB
Challenge: we describe a system for robust recognition of rever-
berated speech. In addition to an HMM-GMM recogniser, we use
bidirectional long short-term memory (LSTM) recurrent neural net-
works. These networks can exploit long-range temporal context by
using memory cells in the hidden units, which increases the robust-
ness against reverberation. The LSTM is trained with phonemes
as targets, and the predictions are converted into observation like-
lihoods and used as an acoustic model. Furthermore, we apply a
dereverberation method called correlation shaping on the 8-channel
recordings. This method applies a reduction of the long-term cor-
relation energy in the received reverberant speech. The linear pre-
diction residual, which generally contains information about rever-
beration, is processed to suppress the long-term correlation that is
mostly due to the speaker-to-receiver impulse response. Using dere-
verberation as a front-end of the GMM in combination with the
LSTM predictions leads to substantial improvements of the word er-
ror rate, achieving 11.19 % (relative improvement of about 35 %) and
28.13 % (improvement of about 30 %) with simulated and real data
test sets, respectively. In the single-channel case, in which the dere-
verberation technique can not be applied, improvements of about
20 % (for simulated data) and 7 % (for real data) are obtained with
the LSTM technique.

Index Terms— Dereverberation, BLSTM recurrent neural net-
works, multi-channel correlation shaping

1. INTRODUCTION

Reverberation severely degrades the performance of automatic
speech recognition. The REVERB Challenge [1] addresses the
problem of reverberated speech by providing a testbed for speech
enhancement and speech recognition methods in a reverberant envi-
ronment. Methods for robust speech recognition can be categorised
into two groups: the first group involves methods of front-end en-
hancement, enhancing either the waveforms or extracted features
by removing noise and reverberation [2]. It is possible to employ
feature adaptations to transform the corrupt features, or to use noise-
robust features directly. The other group of methods comprises
improved recognition back-end systems. Here, one method is to
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adapt the models to noisy features, e. g., using multi-condition train-
ing or methods such as vector Taylor series. On the other hand,
robust models are applied, where especially systems making use of
deep Neural Networks (DNNs) were successful in the last years [3].

Suitable schemes for modelling reverberation are broadly ap-
plied such as the source-image method [4, 5]. Generally a rever-
berant scenario consists of a source speech signal which propagates
through an acoustic channel and is then captured by a microphone.
The microphone signal, however, contains a reverberated version of
the source signal. Thus, dereverberation algorithms are applied on
the microphone signal and output an estimate of the source signal. A
plethora of dereverberation algorithms have been developed over the
last two decades [6]. Several strategies have been proposed, rang-
ing from linear prediction residual processing [7] to multiple micro-
phone array-based techniques [8, 9]. Further approaches addressed
blind system identification [10] by using subspace decomposition
[11] and adaptive filters [12].

In our system we compare two multi-channel dereverberation
techniques: the first technique, phase-error based filtering (PEF),
relies on time-delay estimation with time-frequency masking [13,
14]. The second technique, namely correlation shaping (CS) [15],
is based on linear prediction and reduces the length of the equalised
speaker-to-receiver impulse response.

As a robust recognition back-end, our system employs bidirec-
tional long short-term memory (LSTM) recurrent neural networks
(RNNs) for phoneme prediction. One shortcoming of conventional
RNNs is that the amount of context they use decays exponentially
over time (the well-known vanishing gradient problem [16]). To
overcome this problem, the LSTM concept has been introduced [17].
An LSTM-RNN exploits a self-learnt amount of temporal context,
which makes it especially suited for a speech recognition task in-
volving reverberation and additive noise. The application of LSTM
networks in a double-stream system has first been introduced in [18]
for conversational speech recognition, where LSTM phoneme pre-
dictions improved a simple triphone HMM system. In the first and
second CHiME Speech Separation and Recognition Challenges [19,
20], the task was to recognise speech in a reverberant environment
with highly non-stationary additive noise. Previous versions of the
GMM-LSTM double-stream system that is also used in the present
work showed a high performance in these recognition tasks [21, 22].
In this approach, an LSTM network is used to generate frame-wise
phoneme predictions, largely improving the performance of the max-
imum likelihood (ML) trained HMM baseline system.

A short introduction to the REVERB Challenge is given in the
next section, followed by a description of our recognition system.
The experimental results are described in Section 4, before the paper
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Fig. 1: System overview: a double-stream HMM system combin-
ing GMM and LSTM, and dereverberation using the 8-channel (ch)
recordings

ends with some conclusions.

2. THE REVERB CHALLENGE

Let us just shortly review the REVERB Challenge. The goal of
the 2014 REVERB Challenge [1] is to evaluate methods for speech
enhancement and robust speech recognition in reverberant environ-
ments. Thus, there are two tasks in the challenge (enhancement
and recognition). Our contribution is limited to the recognition
track, where the task is to recognise read medium vocabulary (5 k)
speech in different reverberant environments (reverberation times
T60 ranging from 0.25 to 0.7 s). There are eight different envi-
ronments, whereof six (called the SIM condition) are simulated by
convolving the WSJCAM0 corpus [23] (which is a British English
version of the WSJ corpus [24]) with measured room impulse re-
sponses. The impulse responses were measured in three different
rooms, each at a near (50 cm) and far (200 cm) microphone distance.
Additionally, stationary noise from the same rooms is added at an
SNR of 20 dB. The other two conditions (called the REAL condi-
tion) correspond to recordings from the MC-WSJ-AV corpus [25].
This database contains real recordings of speakers standing in a
reverberated room, measured at two distances (near =~ 100cm and
far =~ 250cm). For all data (SIM and REAL), 8-channel recordings
from a microphone array are available. In addition, it is also possible
to evaluate one-channel systems. In this case, only the recording
from the first microphone is taken. For training the recognition sys-
tem, the WSJCAM0 training set containing 7 861 utterances from
92 speakers is provided. In addition, a multi-condition training set
is available, which is created similarly like the SIM data, from the
WSJCAM0 training set. Test experiments are performed using data
from the eight different environments, where the six conditions from
the SIM data together have 1 484 and 2 176 utterances in the devel-
opment and test set, respectively, each from 20 speakers. The REAL
data consist of 179 and 372 utterances (development and test) from
five/ten speakers. Systems are evaluated using the word error rate
(WER), counting the number of word substitutions, insertions and
deletions as a fraction of the number of target words.

3. SYSTEM DESCRIPTION

Figure 1 shows an overview of the evaluated system. In addition to a

standard HMM-GMM system, the HMM can make use of phoneme
predictions from an LSTM network in a double-stream architecture.
This LSTM network predicts phonemes and the predictions are con-
verted to observation likelihoods for HMM decoding. Compared to
the baseline HMM-GMM, we use a slightly improved system, which
uses a different method for adaptation, and the main difference is that
this system uses a trigram language model instead of the bigram.

The GMM is trained either with clean or multi-condition train-
ing data, while the LSTM uses multi-condition training data in all
experiments. Furthermore, we apply a dereverberation method, pro-
cessing the 8-channel recordings, and the GMM is either fed with the
1-channel reverberated test data or with the 8-channel processed test
data. Here, we compare two different dereverberation techniques,
namely phase-error based filtering (PEF) and correlation shaping
(CS).

3.1. HMM-GMM recognition system

In addition to the REVERB baseline recognition system, which is
implemented in HTK [26], we perform experiments with a (slightly
improved) re-implementation with the Kaldi toolkit [27].

The baseline recogniser is a HMM-GMM system that employs
tied-state HMMs with 10 Gaussian components per state and is
trained according to the maximum-likelihood criterion. As features,
standard MFCCs (computed every 10 ms from windows of 25 ms)
including delta and delta-delta coefficients are used. Two meth-
ods are utilised to address the reverberation in the audio recordings.
First, multi-condition training is employed by training the recogniser
not only with clean training data, but also with the reverberated ver-
sion of the training data. Second, constrained maximum-likelihood
linear regression (MLLR) adaptation (in batch processing) is used
to adapt the features to each test condition. The WSJ0 bi-gram
language model (LM) is used during decoding.

A re-implementation using the Kaldi toolkit of this system is
also used for our experiments. Instead of CMLLR, the Kaldi system
employs basis feature space MLLR [28] for adaptation. This method
performs well even on small amounts of adaptation data and thus
is used for utterance-based batch processing instead of full batch
processing. This means that the implementation is not capable of
on-line processing since it always waits for the end of the current
utterance. The biggest improvement that is made compared to the
baseline system is the introduction of a trigram LM instead of the
bigram LM that is used in the baseline.

3.2. LSTM Double-Stream Recogniser

In addition to GMM acoustic modelling, an LSTM network is used
to generate frame-wise phoneme estimates, as first proposed in [18].
From these phoneme estimates, the observation likelihoods for the
acoustic model are derived. These are used together with the GMM
in a multi-stream architecture.

3.2.1. LSTM Recurrent Neural Networks

LSTM networks were introduced in [17]. Compared to a conven-
tional RNN, the hidden units are replaced by so-called memory
blocks. These memory blocks can store information in the cell vari-
able ct. In this way, the network can exploit long-range temporal
context. Each memory block consists of a memory cell and three
gates: the input gate, output gate, and forget gate, as depicted in
Fig. 2. These gates control the behaviour of the memory block. The
forget gate can reset the cell variable which leads to ‘forgetting’ the
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Fig. 2: Long Short-Term Memory block, containing a memory cell
and the input, output and forget gates

stored input ct, while the input and output gates are responsible for
reading input from xt and writing output to ht, respectively:

ct = f t ⊗ ct−1 + it ⊗ tanh(W xcxt + W hcht−1 + bc) (1)

ht = ot ⊗ tanh(ct) (2)

where ⊗ denotes element-wise multiplication and tanh is also ap-
plied in an element-wise fashion. The variables it, ot and f t are
the output of the input gates, output gates and forget gates, respec-
tively, bc is a bias term, and W is the weight matrix. Each memory
block can be regarded as a separate, independent unit. Therefore,
the activation vectors it, ot, f t and ct are all of same size as ht,
i. e., the number of memory blocks in the hidden layer. Furthermore,
the weight matrices from the cells to the gates are diagonal, which
means that each gate is only dependent on the cell within the same
memory block.

In addition to LSTM memory blocks, we use bidirectional
RNNs [29]. A bidirectional RNN can access context from both
temporal directions, which makes it suitable for speech recognition,
where whole utterances are decoded. This is achieved by processing
the input data in both directions with two separate hidden layers.
Both hidden layers are then fed to the output layer. The combination
of bidirectional RNNs and LSTM memory blocks leads to bidi-
rectional LSTM networks [30], where context from both temporal
directions is exploited. It has to be noted that using bidirectional
LSTM networks makes it impossible to use the system for online
processing.

A network composed of more than one hidden layer is referred
to as a deep neural network (DNN) [3]. By stacking multiple (poten-
tially pre-trained, but not in our system) hidden layers on top of each
other, increasingly higher level representations of the input data are
created (deep learning). When multiple hidden layers are employed,
the output of the network is (in the case of a bidirectional RNN)
computed as

yt = W →
hNy

→
hNt + W ←

hNy

←
hNt + by, (3)

where
→
hNt and

←
hNt are the forward and backward activations of the

N -th (last) hidden layer, respectively. Furthermore, a softmax acti-
vation function is used at the output, with

p(b(j)|xt) =
exp(y

(j)
t )∑P

j′=1 exp(y
(j′)
t )

, (4)

to generate phoneme probabilities for all possible phonemes j =
1, . . . , P . The LSTM is trained with on-line gradient descent using
backpropagation through time, with cross entropy as error function.
Our GPU enabled LSTM software is publicly available1.

3.2.2. LSTM Phoneme Prediction

The LSTM is trained with phonemes as targets, as determined by
a forced alignment with the HMM system. During decoding, dis-
crete phoneme predictions are derived from the network output ac-
tivations. These frame-wise phoneme predictions are used to ob-
tain the likelihood p(bt|st) for the acoustic model in the follow-
ing way: using a validation set, the frame-wise phoneme predic-
tions are evaluated and all confusions are counted and stored in the
phoneme confusion table C as row-normalised probabilities. The
likelihood p(xt|st) (observation given HMM state) is then obtained
from this conditional probability table by using the mapping b =
m(s) from HMM states to phonemes. Since the LSTM works with
monophones, triphone structures are ignored here, by mapping tri-
phone HMM states to the corresponding monophones. Thus, instead
of directly predicting the probability p(st|xt) with the network and
using Bayes’ theorem to obtain observation likelihoods, as in a typ-
ical hybrid system, the confusions of the network are ‘learnt’ in the
conditional probability table C and used to derive the observation
likelihoods p(xt|st). With this method, the RNN needs fewer out-
put nodes (as compared to predicting state posteriors), which makes
it easier to train.

3.2.3. Double-Stream Decoding

In order to combine GMM acoustic modelling and LSTM phoneme
predictions, we employ a double-stream HMM system. In every time
frame t, the double-stream HMM has access to two independent
information sources, pG(xt|st) and pL(xt|st), the acoustic likeli-
hoods of the GMM and the LSTM predictions, respectively. The
double-stream emission probability is then computed as

p(xt|st) = pG(xt|st)λ · pL(xt|st)2−λ, (5)

where the variable λ ∈ [0, 2] denotes the stream weight of the GMM
stream.

3.3. Dereverberation

We apply and compare two multi-channel dereverberation tech-
niques: phase-error based filtering (PEF) [13, 14] and correlation
shaping (CS) [15].

3.3.1. Phase-Error Based Filtering

PEF involves time-varying, or time-frequency (TF), phase-error fil-
ters based on estimated time-difference of arrival (TDOA) of the
speech source and the phases of the signals acquired by the micro-
phones. The phase variance [14] between two speech signals is de-
fined as

ψβ =

N∑
k=1

ωs∑
ω=−ωs

θ2β,k(ω), (6)

where
θβ,k(ω) = ∠X1,k(ω)− ∠X2,k(ω)− ωβ (7)

indicates the level of noise and reverberation present in the entire
speech signal. ∠X1,k and ∠X2,k are the phase spectra of the input

1https://sourceforge.net/p/currennt
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signals at frame k, and θβ,k(ω) is the minimised phase-error when β
equals the TDOA,N indicates the number of segments in the speech
signal, and ωs is the highest frequency of interest. The phase-error
measures the time misalignment at each frequency bin. The overall
phase-error can be reduced to:

θβ,k(ω) = ∠X1,k(ω)− ∠X2,k(ω) (8)

with the assumption that the input signals are time-aligned. The
phase error is used as a reward-punish criteria to removing noise
from multi-microphone speech signals. Time-frequency blocks with
large phase-error are scaled down in amplitude, whereas, blocks with
low phase-error are preserved. First, the phase-error is computed
from the two phase spectra. Then, a masking function is applied
as a weighting function for the amplitude spectrum of each chan-
nel. Spectra are later summed up similarly to delay-and-sum. The
parametrised scaling function,

η(ω) =
1

1 + γθ2β,k(ω)
(9)

is proposed in [14] as a masking function to attenuate the time-
frequency blocks, where γ is a fixed value. Higher values of γ reduce
high phase-error blocks prominently with a consequent improved
performance in low SNR scenarios and worse performance in high
SNR situations. Phase-error based filtering is transferred to multi-
microphone signals by applying the parametrised scaling function
on all possible pairs of microphones. Each microphone pair i and j
is processed by the following masking function

ηij(ω) =
1

1 + γθ2ij(ω)
(10)

which is extended from Equation (9). A detailed analysis [13] pro-
posed the use of a modified geometric mean of the time-varying
functions as follows:

Φi(ω) =
( M∏
j=1,j¬i

ηij(ω)
) 1

m
, (11)

where M is the number of microphones and m is a value which, for
a standard geometric mean, would be equal toM . In this case it rep-
resents a factor affecting the aggressiveness of the algorithm. Using
this approach, the estimation of high phase-error values is relevant
in the mask averaging process, in fact, provided that a pair of micro-
phones results in a very high phase-error for a certain time-frequency
block, the resulting scaling value will be close to zero. The zero
value is then kept in the geometrical averaging with the masking
values for other pairs of microphones. The enhanced spectrum Ŝ(ω)
is obtained by summing up the enhanced spectra processed by the
multi-channel mask φi(ω), as defined in Equation (12).

Ŝ(ω) =

M∑
i=1

Φi(ω)Xi(ω). (12)

3.3.2. Correlation Shaping

CS reduces the long-term correlation in the linear prediction (LP)
residual of reverberant speech. This approach improves both the
audible quality and ASR accuracy of reverberant speech [15]. CS
modifies the correlation structure of the processed speech signal y.
Assuming that an array of M microphones records a speech source,
the signal observed by the mth microphone xm is processed by an

adaptive linear filter gm in order to minimise the weighted mean
square error (MSE) between the actual output autocorrelation se-
quence Ryy , and the desired output autocorrelation sequence Rdd.
The adaptive linear filters are continuously adjusted via a set of feed-
back functions in order to minimise the MSE.

Gradient descent is used to perform the minimisation via the
adaptive filters. The gradient relies on the output autocorrelation
Ryy , the cross-correlation between the output and input, Ryxm , and
the desired output autocorrelation Rdd.

The autocorrelation sequence Rxmxm(τ) of the multi-channel
input sequence xm(n) is given by

Rxmxm(τ) =

N−1∑
n=0

xm(n)xm(n− τ). (13)

CS is implemented as a multi-input single-output linear filter,
defined as

y(n) =

M−1∑
m=0

gTm(n)xm(n). (14)

The autocorrelation sequence Ryy(τ) of the output signal y(n)
is expressed as follows:

Ryy(τ) =

N−1∑
n=0

y(n)y(n− τ), (15)

whereN is the number of samples over which autocorrelation is
computed, τ is the correlation lag.

The scope of CS is to minimize the weighted MSE given by

e(τ) = W (τ)
(
Ryy(τ)−Rdd(τ)

)2
, (16)

where W (τ) is a real value weight. The larger W (τ) is, the
more relevant the error at a specific lag τ is.

For dereverberation purposes, the linear prediction residual is
fed into the correlation shaping processor, and the target output cor-
relation is set to be Rdd(τ) = δ(τ). By further exploiting autocor-
relation symmetry, the gradient can be simplified as

∇m(l) =
∑
τ>0

W (τ)Ryy(τ)
(
Ryxm(l− τ)+Ryxm(l+ τ)

)
. (17)

This gradient is used in the following filter update equation

gm(l, n+ 1) = gm(l, n)− µ∇
′
m(l), (18)

where µ is the learning rate parameter and∇
′
m(l) is given by

∇
′
m(l) =

∇m(l)√∑
m

∑
l∇2

m(l)
(19)

The dereverberated speech signal is obtained by applying the
equaliser g(l, n) onto the input signal. Considering that the reverber-
ation time affects significantly audio quality and automatic speech
recognition accuracy [15], a ‘don’t care’ region is introduced. The
‘don’t care’ region is applied to autocorrelation lags closed to the
zeroth lag in order to improve the suppression of long-term compo-
nents. This region modifies the gradient in Equation (17) and con-
trols the value of the first autocorrelation lag.
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4. EXPERIMENTS

We first describe the configuration of the parts of our recognition
system before presenting and discussing the experimental results. In
order to give detailed analysis of the contribution of different system
components to the final results, we will provide extensive results
using the development set and the test set.

4.1. System Configuration

4.1.1. HMM

The Kaldi HMM system is tested in similar configurations as the
Challenge baseline system. First, a clean triphone recogniser is
trained with the WSJCAM0 training set. Then, the reverberated
training set is used to train a multi-condition acoustic model. For
this model, the bases for MLLR adaptation are estimated, and fi-
nally, the trigram LM is used for decoding with this model. In the
case of using front-end dereverberation, the employed method is
always only applied on the test data, while the original acoustic
model is used.

4.1.2. LSTM

Instead of MFCCs, the LSTM uses Mel filterbank features, comple-
mented by their delta coefficients. This follows other recent studies
that use NNs for speech recognition [3, 31]. We use 26 log filter-
bank coefficients (plus root-mean-square energy) covering the fre-
quency range from 20–8 000 Hz, computed with a frame size of 25
ms and frame shift of 10 ms. Thus, in total, the dimension of fea-
tures for the LSTM is 54. Features for the LSTM are extracted from
the one-channel recordings. As an additional preprocessing step, we
consider a per-utterance peak normalisation of the waveforms of the
audio recordings. To this end, the recording is amplified to set the
largest occurring absolute value to -3 dB of the maximum amplitude.
This was necessary because the recordings from the REAL dataset
are badly adjusted.

The topology of the tested bidirectional LSTM network is as
follows: as the dimension of the feature vector is 54, this is also the
size of the input layer. Three hidden layers are employed, where
we tested two systems, with 100 or 200 LSTM blocks. The number
of output units corresponds to the number of phonemes, which is
45 in our system. For training the networks, the multi-condition
training set is employed. The networks are trained through online
gradient descent with a learning rate of 10−5 and momentum of 0.9.
During training, zero mean Gaussian noise with standard deviation
0.6 is added to the inputs in order to further improve generalisation.
All weights were randomly initialised from a Gaussian distribution
with mean 0 and standard deviation 0.1. After every training epoch,
the average cross-entropy error per sequence on a validation set is
evaluated. Training is aborted as soon as no improvement on the
validation set can be observed during 10 epochs. This validation is
a held-out part of the multi-condition training set, consisting of the
utterances from 10 speakers. The stream weight for double-stream
decoding is set to λ = 1.2.

4.1.3. Dereverberation

First, we evaluated PEF by using a frame size of 1 024 samples as
in [14]. Smaller frame sizes result in less reliable phase estimates
causing artifacts and distortions in the reconstructed signal. A frame
shift of 10 ms was applied. γ was set to 0.01 in order to avoid an
aggressive masking that is suitable only in low SNR conditions. In

Table 1: Baseline recogniser vs. improved Kaldi system (WER on
the development set). For decoding, either a brigram (bg) or trigram
(tg) language model (LM) is used.

Recogniser WER [%]
Adapt MCT LM SIM REAL

Baseline system
- - bg 51.86 88.51
3 - bg 39.57 83.82
- 3 bg 28.94 52.29
3 3 bg 25.16 47.23

Kaldi system
- - bg 50.61 88.50
- 3 bg 27.85 53.00
3 3 bg 22.07 45.52
3 3 tg 16.85 38.33

Table 2: Baseline recogniser: influence of CS dereverberation, WER
(in %) on the development set

Baseline GMM +CS
Adapt MCT LM SIM REAL SIM REAL

- - bg 51.86 88.51 34.66 70.04
3 - bg 39.57 83.82 23.90 56.61
- 3 bg 28.94 52.29 21.79 42.40
3 3 bg 25.16 47.23 19.48 37.66

fact, the more γ steps up, the more WER increases rapidly. k was set
to M in order to obtain the geometric mean of the signal and avoid
severe speech distortions. Next, we performed CS by estimating au-
tocorrelation functions on the whole speech segment. We applied
62.5 ms long equalisers, a 18.7 ms long ‘don’t care’ region and ex-
ponential weighting. Correlation shaping was performed up to τmax
equals 62.5 ms.

4.2. Results for the Improved HMM-GMM

First, we replaced the baseline recognition system by a slightly im-
proved version (from now on called the Kaldi system) as described in
Section 3.1. A comparison of the performance of these two systems
can be seen in Table 1. We used the Kaldi system in similar config-
urations as the baseline system, concerning multi-condition training
and adaptation. The unadapted systems (clean and MCT) achieve
similar results, while the adaptation implemented in the Kaldi sys-
tem is slightly better. Furthermore, using the trigram LM leads to a
large improvement in WER.

4.3. Influence of Dereverberation

Next, we investigate the influence of our dereverberation methods.
This is firstly tested in combination with the baseline recognition
system, in order to make it comparable to other systems that keep
the back-end fixed and only improve the front-end of the system.
The results of the experiments employing CS for dereverberation
together with the baseline recogniser (using the development set)
can be seen in Table 2. Similar improvements are obtained with all
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Table 4: Dereverberation: multi-channel correlation shaping (CS)
and phase-error based filtering (PEF), development set

Kaldi baselines CS PEF
Adapt MCT LM SIM REAL SIM REAL

- - bg 32.33 66.81 31.57 68.22
- 3 bg 20.85 37.42 20.34 38.45
3 3 bg 16.44 33.67 16.37 33.69
3 3 tg 12.05 27.70 12.11 28.43

configurations of the recogniser.
The results of using CS as a front-end to the Kaldi recogniser

can be seen in Table 3. Generally, the same trends are visible as
in combination with the baseline recognition system. For the best
configuration, the results are improved by 28 % relatively for both
the SIM and REAL datasets.

We compare the two employed dereverberation methods as a
front-end to the Kaldi recognition system. The experimental re-
sults (using the Kaldi recogniser) are listed in Table 4. CS achieves
slightly better results than PEF. For the REAL data, this is clearly il-
lustrated in the results, while for the SIM data, this is at least the case
for the best recognition back-end (last row in Table 4). Therefore, in
all other experiments, we use this dereverberation method. This can
be explained considering the difference between the two approaches:
PEF aims to reduce noise and reverberation by minimising the mean
phase variance while CS was exclusively designed for dereverbera-
tion and it is known that can effectively improve audible quality and
ASR accuracy [15]. Furthermore, CS was implemented by estimat-
ing autocorrelation functions on the whole speech segment.

4.4. LSTM

Experimental results for combining the Kaldi recognition system
(with or without front-end dereverberation) in the double-stream
setup with the LSTM predictions are also listed in Table 3. Note that
in all cases, the LSTM parameters are estimated using the multi-
condition training set. For the SIM condition, including LSTM
predictions leads to a similar improvement as with dereverbera-
tion. Apart from that, the improvements with the REAL data are
smaller. Here, the mismatch between training and test data has a
larger influence on the LSTM recognition performance. Table 3 also
includes the results for using dereverberation and LSTM predictions
in combination. Adding LSTM predictions to the GMM system with
dereverberation leads to a further 15 % relative improvement (down
to 10.21 %) for SIM, while the best system is not improved for the
REAL data.

We tested different configurations of the LSTM recognition
system and evaluated the frame-wise phoneme classification perfor-
mance on the development set. The results are listed in Table 5. A
smaller and a larger LSTM network were considered, and we inves-
tigated the influence of the audio normalisation that is described in
Section 4.1.2. First of all, the results show that the normalisation
had a positive effect on the results for the REAL data, while the SIM
results are unaffected. Increasing the number of LSTM units in the
hidden layers to 200 brought a small improvement to the SIM data.
Since the LSTM was validated with a small partition of the original
MCT training set (using a forced alignment of the development data
for system training is not allowed in the challenge), which is com-
parable to the SIM data, it was decided to use the larger network in

Table 5: LSTM size: phoneme classification error (in %) on devel-
opment

Phoneme Error
Norm. Network weights SIM REAL

- 3x100 170 k 25.91 67.79
3 3x100 170 k 25.55 51.39
3 3x200 600 k 24.97 52.35

Table 6: Baseline recogniser: Influence of CS dereverberation, test
set

Baseline GMM +CS
Adapt MCT LM SIM REAL SIM REAL

- - bg 51.68 88.53 34.56 72.88
3 - bg 39.16 81.53 24.29 59.41
- 3 bg 29.51 56.94 24.12 45.65
3 3 bg 25.25 48.85 20.62 38.83

the other experiments. The large phoneme error rate with the REAL
data is also reflected in the WER, where only a small improvement
is obtained by using the LSTM predictions (cf. Table 3). This dis-
crepancy between SIM and REAL data may indicate overtraining of
the LSTM.

4.5. Test Set Results

Finally, experimental results with the test set are listed in Table 6 for
the baseline recognition system (with and without speech derever-
beration) and in Table 7 for the Kaldi system. Overall, the results
are comparable to the development set results, and the same tenden-
cies are visible.

To give a detailed coverage of the results on the test set, Table 8
includes test set results for five different system configurations, bro-
ken down into the eight different recording conditions. By looking at
these results, it can be observed that, while the relative improvement
from the LSTM predictions is similar for all (simulated) room con-
ditions, the employed dereverberation technique works better with
higher reverberation times. This is due to the fact that CS is penal-
ising long-term reverberation energy more effectively. Thus, we can
observe a better dereverberation under long impulse responses.

Row five in Table 8 represents our best system working with 1-
channel recordings, while row six corresponds to the best 8-channel
system. These two results were our official submissions in the two
different conditions.

5. CONCLUSIONS

This paper presented the TUM system for the 2014 REVERB Chal-
lenge for recognition of reverberated speech. We use an LSTM
network for phoneme prediction in addition to the GMM acoustic
model, which increases the robustness of the system. In addition,
a dereverberation method called correlation shaping is applied, us-
ing 8-channel audio recordings to estimate and filter the reverber-
ation. Experiments were performed according to the official RE-
VERB Challenge guidelines with the provided datasets. In addition
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Table 3: Kaldi recogniser: influence of CS dereverberation and LSTM, development set

Kaldi GMM +CS +LSTM +CS, +LSTM
Adapt MCT LM SIM REAL SIM REAL SIM REAL SIM REAL

- - bg 50.61 88.50 32.33 66.81 38.46 79.90 22.85 59.16
- 3 bg 27.85 53.00 20.85 37.42 21.07 47.20 16.59 37.16
3 3 bg 22.07 45.52 16.44 33.67 17.38 42.70 13.90 33.65
3 3 tg 16.85 38.33 12.05 27.70 12.98 36.14 10.21 28.16

Table 7: Kaldi recogniser: influence of CS dereverberation and LSTM, test set

Kaldi GMM +CS +LSTM +CS, +LSTM
Adapt MCT LM SIM REAL SIM REAL SIM REAL SIM REAL

- - bg 49.95 88.50 32.88 70.98 36.80 79.81 23.92 62.06
- 3 bg 27.53 53.78 22.06 40.37 20.79 48.97 17.63 37.89
3 3 bg 22.36 46.14 17.75 34.06 17.77 43.83 14.82 34.39
3 3 tg 17.26 39.76 13.20 28.15 13.75 36.78 11.19 28.13

to the baseline recogniser, a slightly improved HMM-GMM was also
tested. The results showed that all employed methods are highly ef-
fective for the recognition of reverberated speech. The correlation
shaping approach led to slightly better performances than phase-
error based filtering. This corroborates common wisdom that reduc-
ing the length of the equalised speaker-to-receiver impulse response
can improve audible quality and ASR accuracy.

Regarding multi-channel results, the correlation shaping method
gives significant improvements with a reduction of more than 25 %
in WER. This is achieved at a low computational complexity, as the
LSTM does not really improve these results (at least not on real
data). On simulated data, the LSTM gives an additional improve-
ment of about 15 % but this is achieved at a tremendous computa-
tional expense (LSTM training and decoding). In the single-channel
case (i. e. without applying correlation shaping), the WER reduction
is around 7 % on real data with the LSTM technique. It is about 20 %
on simulated data.

Further improvements are possible with a full integration of all
system components. In the current version, speech dereverberation
is not applied on the multi-condition training set, which might bring
another small improvement. In addition, the input to the LSTM net-
work is also unenhanced. However, it is not yet confirmed in the lit-
erature, whether speech enhancement is still relevant for deep neural
network based systems; this has to be shown in future work, espe-
cially also for LSTM systems. A detailed comparison of LSTMs
(used as an acoustic model in a hybrid system) and similar DNNs
without LSTM cells is also to be done in the future. Beyond that,
the employed HMM-GMM does not yet use all state-of-the-art tech-
niques; discriminative training will further improve the system.
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