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ABSTRACT

We present a single channel method for late reverberation suppres-
sion. The proposed approach estimates late reverberation as a linear
combination of previous time-frequency frames. We impose a spar-
sity constraint on the predictor in order to select the most relevant
signal frames for the estimation. The dataset used for the evaluation
is corrupted by background noise, thus we propose to jointly sup-
press background noise and late reverberation. This leads to an im-
portant improvement in the quality of the processed signals as well
as an improvement of the automatic speech recognition scores. The
method appears to be efficient mainly in far field conditions and in
highly reverberant environments. In addition, it is suitable for real
time processing.

Index Terms— Single Channel Speech Enhancement, Late Re-
verberation Estimation, Lasso, Sparse Linear Prediction, Noise Re-
duction

1. INTRODUCTION

In this paper we describe a method for single channel late reverbera-
tion suppression in noisy conditions. The proposed approach uses a
speech enhancement framework to estimate the power spectral den-
sity (psd) of late reverberation in the time-frequency domain. This
framework was originally proposed for dereverberation in [1] and
extended later in [2].
The estimation is based on the principle of linear prediction: late
reverberation is modeled as a linear combination of previously ob-
served signal frames. In addition we assume that only a small set
of those frames is relevant for the prediction, i.e., we introduce a
sparse prior for the linear predictor. Under these assumptions, we
can model the estimation of late reverberation as a regression prob-
lem that can be solved using the Lasso [3]. The estimated late re-
verberation is then used to design a time-frequency filter based on
the Log Spectral Amplitude estimator [4]. The resulting estimator is
studied in blind conditions: its settings are kept unchanged for every
different acoustic environment. Thus, we do not need to estimate
the acoustics parameters that are often required for dereverberation
approaches, namely the reverberation time and the Direct to Rever-
berant Ratio (DRR).
In order to improve noise robustness, we couple our method with a
background noise estimator to achieve joint noise and reverberation
suppression. This joint approach was evaluated for both Speech En-
hancement (SE) and Automatic Speech Recognition (ASR) tasks and
the results were submitted to the REVERB Challenge[5]. We show
that the method is able to reduce late reverberation in every condi-
tion. However, it is more efficient in far field conditions and in highly
reverberant environments where the distortion levels are kept at very
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Fig. 1. Speech enhancement framework for single channel reverber-
ation suppression.

reasonable levels. The overall method is compatible with real-time
processing.

2. PROPOSED METHOD

The proposed method is based on the speech enhancement frame-
work depicted in Figure 1. We denote by X the magnitude of the
Short Time Fourier Transform (STFT) of the noisy and reverber-
ant signal x(t). Late reverberation X` is estimated in the time-
frequency domain as well as the background noise Z. Both inter-
ferences are used to design an enhancement filter. We use the noisy
and reverberant phase Φ together with the enhanced spectral magni-
tude Y to produce the time domain output y(t).

2.1. Late reverberation estimation

In the frequency domain, the reverberated signal at frequency k and
time n is usually written as:

Xk,n = Xe
k,n +X`

k,n , (1)

where Xe
k,n and X`

k,n represent respectively the early and late re-
verberation terms [2]. According to this model, late reverberation
appears like an additive interference that can be suppressed by spec-
tral subtraction techniques. As reverberation is produced by delayed
and damped replicas of the direct sound, we propose to predictX`

k,n

in each frequency channel as a linear combination ofL signal frames
preceding the current frame:

X̂`
k,n =

L−1∑
i=0

αiXk,n−i−δ. (2)

Here we introduce a delay of δ frames intended to reduce the influ-
ence of the direct path on the prediction. As speech is known to be
sparse in the time-frequency domain, we impose a sparsity constraint
on the predictor α = [α0 . . . αL−1]T . Hence, we assume that only
a small number of frames contribute significantly to the prediction.
Under these assumptions, we state the problem of estimating late
reverberation as an instance of the Lasso [3]:
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minimize
α

||Xk,n −
L−1∑
i=0

αiXk,n−i−δ.||2 s.t. |α| ≤ λ. (3)

The proposed estimator predicts late reverberation as a redun-
dancy term while early reflections are viewed as the residual of the
prediction. The predictors are obtained by solving the Lasso with the
Least Angle Regression (LARS) algorithm [6]. To this aim, we use
the efficient mexLasso function from the SPAMS toolbox1. Accord-
ing to the model (3), the solver projects the current observation on
the vector Vk,n = [Xk,n−δ, . . . , Xk,n−δ−L+1] ∈ RL. The LARS
algorithm selects at most as many active predictors as the smallest di-
mension of Vk,n. Thus, only one active prediction coefficient among
L is selected in the configuration used in this paper, resulting in a
sparse predictor. The main difference with the methods in [1, 2] is
that the delay between the current observation and the active predic-
tor is now allowed to change in the range [δ, δ + L]. The hyperpa-
rameter λ acts as an upper bound for the magnitude of the predictor
and allows to control the maximal amount of energy associated to
late reverberation. For the remaining of this paper, we will work in
blind conditions, i.e., λ will be kept constant independently of the
acoustic environment. Its value must be high enough to cover a wide
range of reverberation times, so that the system adapts the magnitude
of the predictor to the acoustic conditions under consideration.
We further reduce the complexity by subsampling the spectrogram
along the frequency axis. For this, we define a set of 10 non over-
lapping octaves and we average the bins in each octave, to produce
a 10-channel spectrogram. Finally, all the frequency bins within the
same octave are associated to the same predictor to synthesize the
late reverberation spectrogram as stated in (2).

2.2. Background noise estimation

When background noise is present, the performance of the estima-
tor introduced above is degraded. To cope with this, we propose to
independently estimate background noise and reverberation in order
to build a joint enhancement filter.

Let Z be magnitude spectrum of the background noise. The
corresponding noise psd is estimated as:

Z2
k,n = βZ Z

2
k,n−1 + (1− βZ)X

2
k,n, (4)

where βZ is the smoothing constant for the recursive average related
to the noise spectrum estimation. In order to improve the accuracy of
this estimate, we use a simple Voice Activity Detector (VAD) based
on hard thresholding. The noise psd is only updated when speech
is absent. For all the experiments, we use βZ = 0.97 which corre-
sponds to a time constant of 371 ms for a sampling rate of 16 kHz.

2.3. Time-Frequency filtering

The time-frequency filterGk,n is based on the Ephraim and Malah’s
Log Spectral Amplitude (LSA) estimator [4] and defined as:

Gk,n =
ξk,n

1 + ξk,n
exp

{
1

2

∫ ∞
νk,n

e−t

t
dt

}
, (5)

where ξk,n and γk,n denote respectively the a priori and the a poste-
riori Signal to Noise Ratios and νk,n =

ξk,n

1+ξk,n
γk,n. This filter was

originally proposed to suppress only background noise. In [7] the

1http://spams-devel.gforge.inria.fr/

definitions of both γk,n and ξk,n are modified in order to handle the
case of multiple interferences. The well-known direction directed
approach is used to recursively estimate the a priori SNR related to
late reverberation and background noise.

We will use this approach for the derivation of the enhancement
filter. The smoothing constant for the estimation of the a priori SNR
is set to βsnr = 0.998. We additionally define a lower bound Gmin
to the enhancement gain Gk,n in order to avoid annoying musical
noise.

3. REVERB CHALLENGE EVALUATION

In this section we evaluate the proposed single channel algorithm
with the evaluation tools from the REVERB Challenge on both the
SimData and the RealData datasets. We will focus on the SE task
but we will also give the performance of the proposed system for the
ASR task.

3.1. Settings

In the following SE experiments we want to evaluate the perfor-
mance of the method for joint dereverberation and noise reduction.
We will also evaluate each stage individually to give a better insight
on the properties of our system. All the SE results are presented as
follows:

• Baseline: unprocessed reverberant signals,

• DRVNR: joint dereverberation and noise reduction,

• DRV: only dereverberation,

• NR: only noise reduction.

In all cases, we use exactly the same settings for the estimation of
the interferences and the design of the filter. The main parameters
are summarized in Table 1. For the STFT filterbank, we use a 32 ms
long Hamming window with 75% overlap.

Late reverberation estimation:
L = 10 δ = 5 λ = 0.9

Background noise estimation:
βZ = 0.97

Filter design:
βsnr = 0.998 Gmin = -18 dB

Table 1. Values of the parameters for the evaluation

3.2. Evaluation of the Speech Enhancement task

The SE task is twofold, it allows to assess the performance of a given
method and also to study the ability of each objective measure to rate
the quality of the resulting signals. We will analyze and comment the
evaluation results obtained with each of the metrics.

3.2.1. Signal to Reverberant Modulation Ratio (SRMR)

The SRMR is non-intrusive measure based on the modulation en-
velope that was specially designed for the evaluation of reverberant
signals. Higher values indicate reduced reverberation. The results
are summarized in Table 2. Let us consider first the results obtained
with the SimData dataset. We observe that the proposed DRVNR ap-
proach yields the higher average SRMR. For every considered room
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SimData RealData
SRMR Room 1 Room 2 Room 3 Ave. Room 1 Ave.

Near Far Near Far Near Far Near Far
Baseline 4.50 4.58 3.74 2.97 3.57 2.73 3.68 3.17 3.19 3.18
DRVNR 6.96 8.19 6.59 7.21 6.23 6.28 6.91 7.40 7.68 7.54

DRV 5.91 6.39 5.83 5.94 5.70 5.77 5.92 9.05 8.83 8.94
NR 4.70 5.09 4.28 4.01 4.28 3.76 4.35 4.62 4.76 4.69

Table 2. SRMR for SimData and RealData

there is an increase of the SRMR that confirms the ability of our
method to blindly reduce reverberation under different acoustic con-
ditions. Both the DRV and NR approaches manage to reduce rever-
beration but to a lower extent. It is not surprising that the NR ap-
proach increases the SRMR. Indeed, the modulation envelope of the
signal is modified by the NR processing and leads to an increase of
the SRMR. This shows that the SRMR is not able to evaluate only the
effects of reverberation but it can also be influenced by other mod-
ulation artifacts introduced during the processing. Still, the largest
increases on the SRMR appear when we include dereverberation in
the processing which indicates that the measure is mostly sensitive
to reverberation.
Regarding the RealData dataset, the DRV approach gives better re-
sults than DRVNR. However, as we will see below, it also introduces
important distortions that are avoided with the DRVNR approach.

3.2.2. Cepstral distance (CD) and Log Likelihood Ratio (LLR)

Now we study two different distortion measures: the cepstral dis-
tance and the log likelihood ratio. For both measures lower values
mean less distortion. The results are reported in Tables 3 and 4. We
observe that when we individually apply NR or DRV the distortion
levels are increased with respect to the baseline. This is due to the
musical noise that appears when either noise or reverberation levels
are high.

The joint DRVNR method gives good performance compared
to the unprocessed signals. We observe lower distortion levels for
rooms 2 and 3 while they are increased in room 1, the less reverber-
ant enclosure. This shows that the settings we chose for the proposed
method are best suited for big rooms. In the smallest room, late re-
verberation is over estimated and leads to excessive spectral subtrac-
tion. This introduces distortion artifacts that affect the quality of the
processed audio. This effect can be limited by setting a lower value
for the hyperparameter λ.

To conclude this part, we suggest that CD and LLR are equally
informative and thus we can use just one of them to evaluate the
distortion.

Room 1 Room 2 Room 3 Ave.
CD Near Far Near Far Near Far

Baseline 1.99 2.67 4.63 5.21 4.38 4.96 3.97
DRVNR 2.67 3.03 4.32 4.87 4.14 4.63 3.94

DRV 3.88 4.21 4.65 5.22 4.61 5.07 4.61
NR 4.45 4.82 4.41 5.35 4.86 5.64 4.92

Table 3. SimData: Cepstral distance [dB]

3.2.3. Frequency Weighted Signal to Noise Ratio (FWSNR)

The results of the evaluation with the frequency weighted signal to
noise ratio are presented in Table 5. In average, the three approaches

Room 1 Room 2 Room 3 Ave.
LLR Near Far Near Far Near Far

Baseline 0.35 0.38 0.49 0.75 0.65 0.84 0.58
DRVNR 0.42 0.45 0.51 0.72 0.67 0.81 0.60

DRV 0.79 0.83 0.81 1.02 0.94 1.06 0.91
NR 0.78 0.86 1.01 1.23 1.09 1.28 1.04

Table 4. SimData: Log Likelihood Ratio

under evaluation improve the FWSNR. A more detailed view shows
that we actually improved the FWSNR in Rooms 2 and 3 but we
failed in Room 1. In addition, the larger improvements were ob-
tained in far field conditions. This is coherent with the previous ob-
servations. The proposed method has a satisfactory performance in
large rooms. In addition, it is more efficient if we place ourselves in
far field conditions but it is still able to enhance the signals in near
field conditions as long as the reverberation time of the room is high.

Regarding the measure itself, it behaves similarly to the SRMR
in Rooms 2 and 3. However in Room 1 we did not observe the
improvement that was assessed by the SRMR. We suggest that the
FWSNR measures a trade-off between the reduction of reverberation
and the distortions introduced.

Room 1 Room 2 Room 3 Ave.
FWSNR Near Far Near Far Near Far
Baseline 8.12 6.68 3.35 1.04 2.27 0.24 3.62
DRVNR 6.47 6.29 4.05 2.91 3.51 2.42 4.27

DRV 4.95 4.63 5.16 3.90 4.62 3.54 4.47
NR 6.18 5.50 5.69 1.06 3.56 0.93 3.82

Table 5. SimData: Frequency Weighted segmental Signal to Noise
Ratio [dB]

3.2.4. Wall clock time

We ran a Matlab implementation of the proposed method and we
observed a real time factor of 9.41 % for the SimData dataset and of
9.29% for RealData dataset. For this experiment we used a computer
running under Windows 7 Professional (SP 1, 64 bits). The CPU was
Intel Core i7 (1core) M640 CPU at 2,80GHz and 4,0 Gb of RAM
memory were available. The reference beamforming system made
available for the REVERB Challenge showed real time factors of
2.07% and 2.10% in each of the previous datasets (this in only given
for normalization purposes). Our blind approach for joint noise and
reverberation suppression is able to run in real-time.

3.3. Evaluation of the Automatic Speech Recognition task

For the ASR task we only evaluate the performance of joint noise and
reverberation suppression method (DRVNR). ASR systems are highly
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SimData RealData
WER Room 1 Room 2 Room 3 Ave. Room 1 Ave.

Near Far Near Far Near Far Near Far
Baseline 12.93 17.72 24.03 72.54 30.46 79.72 39.53 83.16 84.48 83.81
AMclean 17.54 22.42 24.04 45.60 30.78 56.92 32.87 74.58 71.71 73.14
AMmmc 19.13 21.42 21.00 29.89 24.45 35.24 25.35 52.06 51.08 51.57

Table 6. Word Error Rate for SimData and RealData

dependent on the acoustic models used for training so we consider
two different acoustic models in this evaluation. First, we use the
acoustic model trained on clean data and made available for the RE-
VERB Challenge, we will refer to this case as AMclean. For the
second acoustic model, we processed the reverberant data from the
Multi Condition dataset with our enhancement approach. We trained
a new acoustic model with this data in order to learn the characteris-
tics of our approach. We will refer to this model asAMmmc. Finally,
we denote as Baseline the scores obtained with the unprocessed data
and the clean acoustic model. All the ASR results presented here are
obtained after applying CMLLR to the recognized data in order to
improve the matching between the acoustic features and the training
data. We obtained the best ASR results with this configuration.
We first analyze the behavior of the Baseline system. The ASR sys-
tem has a fair performance in the smallest room but it rapidly de-
grades as the room becomes bigger. The system is particularly bad
in far field conditions.
Now, we consider the AMclean case. In room 1 from the SimData
dataset, the distortions introduced by our approach (see above) pro-
voke a degradation in the recognition accuracy. In rooms 2 and 3
there is a slight degradation in near field conditions but we observe
a significant improvement in far field conditions. In the RealData
dataset there was an improvement in near field conditions but the
scores in far field conditions are still better. We conclude that our
method is mostly suitable to enhance highly reverberated signals
with low Direct to Reverberation Ratio. Finally, we obtain our best
recognition results in the AMmmc case. The overall behavior of the
method is the same as in the AMclean. However, the WER signif-
icantly dropped with this modified acoustic model. This shows that
it is mandatory to train the acoustic model with reverberant data that
has been processed by our approach.

3.4. Discussion

Here we summarize the main conclusions from the evaluation.
Regarding the proposed method, we showed that it is able to

reduce reverberation in every condition but it introduces annoying
distortions in near field conditions and in small rooms. This is in
part explained because we are working in blind conditions and thus
late reverberation is overestimated in small enclosures. Reducing the
hyperparameter λ allows to limit those distortions. The ASR experi-
ments shows that joint noise and reverberation suppression can sig-
nificantly improve the WER. It is recommended to train the acoustic
model with reverberant data that has been processed by our enhance-
ment method.

Regarding the measures considered for this evaluation, the
SRMR is well suited to evaluate the level of reverberation but care
must be taken when using other processings that modify the modu-
lation envelope of the signals. We suggest that the CD and the LLR
are both well adapted to evaluate distortions. The FWSNR behaves
similarly to the SRMR but it is also able to evaluate the trade-off
between speech enhancement and distortions. Finally, there is a cor-
respondence between the observed distortion measures (CD, LLR)

and the WER. We believe that these measures could be used to pre-
dict the performance of the ASR system.

4. CONCLUSION

We presented a novel method for single channel late reverberation
suppression. Late reverberation is estimated as a sparse linear com-
bination of previous frames before being suppressed by a state-of-
the-art time-frequency filter. While this method showed an improve-
ment in the SRMR of the processed signals, it also introduced dis-
tortions to the speech signal. To cope with this we proposed to
jointly suppress background noise and late reverberation. Accord-
ing to this framework, both interferences are estimated individually
and used afterwards to design a joint filter. The overall performances
were neatly improved for both Speech Enhancement and Automatic
Speech Recognition tasks, specially for data recorded in far field
conditions and in large rooms. The resulting system was able to
process noisy and reverberant data in real-time while keeping rea-
sonable distortion levels.
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