
A COMPUTATIONALLY RESTRAINED AND SINGLE-CHANNEL BLIND
DEREVERBERATION METHOD UTILIZING ITERATIVE SPECTRAL MODIFICATIONS

Kazunobu Kondo†

†Yamaha Corporation, Hamamatsu, Japan

ABSTRACT

A computationally restrained, single-channel, blind derever-
beration method is proposed. The proposed method consists
of two iterative spectral modifications, which employs spec-
tral subtraction for noise reduction, and a complementary
Wiener filter for dereverberation. Modulation transfer func-
tion is employed to calculate the dereverberation parameters.
Late reverberation is estimated without any delaying oper-
ations, in contrast to other commonly used dereverberation
methods. The proposed method achieves very balanced dere-
verberation and distortion reduction performance, in spite of
the proposed ‘rough’ T60 estimation technique. Some signal
delay occurs as the result of Short Time Fourier Transform,
but this delay is equivalent to the delay caused by conven-
tional noise reduction methods such as spectral subtraction.
Computational cost is sufficiently restrained, despite of the
use of iterative spectral processing.

Index Terms— Dereverberation, Noise reduction, Wiener
filter, Modulation transfer function, Computational cost

1. INTRODUCTION

Speech communication and recognition systems are generally
used in noisy and reverberant environments, such as meet-
ing rooms, and reverberation time is usually under 1 second.
However, speech quality and recognition performance are
degraded under these conditions. To counter this degradation,
various dereverberation techniques have been developed.
Multi-microphone techniques estimate late reverberation us-
ing spatial correlation [1–5], or estimate an inverse filter using
the MINT theorem [6] in [7, 8]. Although multi-microphone
techniques can be applied to devices such as smart-phones
and other portable equipment, single-channel methods are
still useful for some speech enhancement applications. One
serious challenge when performing single-channel derever-
beration is that there is no spatial information which can be
utilized. Various single-channel speech enhancement tech-
niques have been used for dereverberation, such as spectral
subtraction [9] and MMSE-STSA [10], and successful results
have been reported [8, 11–13].

Several functions are used in voice terminals to improve
speech quality, such as echo cancellation and noise reduction.

Since all of these functions work concurrently, each function
needs to be computationally efficient, because overall com-
putational cost should usually be kept low. A Wiener filter
(WF) is often used to enhance the target signal. If the range
of WF β is 0 ≤ β ≤ 1, then 1 − β could be referred to as
a “complementary Wiener filter” (CWF) [14]. In a previous
study, the author of the current study utilized computationally
efficient CWFs for the purpose of dereverberation [15], but
their performance proved to be insufficient for longer rever-
beration times, in addition the parameters were heuristically
determined by simply using a grid search.

In this paper, an improved dereverberation method based
on the use of a CWF is proposed, in which the power spec-
trum is iteratively modified. The parameters are estimated
using modulation transfer function (MTF) related to the re-
verberation. The proposed method blindly estimates rever-
beration time, and CWF parameters are then calculated using
this estimate. The CWF is then used to estimated late rever-
beration for dereverberation processing, during which the es-
timated late reverberations are iteratively subtracted from the
observed signal.

The rest of this paper is organized as follows: Section 2
briefly describes the signal model and dereverberation method
previously proposed by the author. Section 3 describes the
proposed method. Section 4 describes the dereverberation ex-
periment and its results. Section 5 concludes this paper.

2. DEREVERBERATION USING A CWF

This section describes the signal model and CWF-based
dereverberation method previously proposed by the au-
thor [15]. Observed signal X(k,m) can also be described
as S(k,m)H(k,m), where S(k,m) and H(k,m) represent
the source signal and the room impulse response (RIR), re-
spectively, and where k and m are frequency bin and frame
indexes, respectively. The RIR is considered to conform with
Polack’s statistical model [16]. The observed power spec-
trum PX(k,m) is formulated using source power spectrum
PS(k,m) and Polack’s statistical RIR model:

PX(k,m) = C

M60∑
m′=0

e−2∆m′NE/T60PS (k,m−m′) , (1)
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Fig. 1. Diagram of proposed dereverberation method.

where T60, Fs and NE represent reverberation time, sampling
frequency, and frame size of the Short Time Fourier Trans-
form, respectively. ∆ is the energy decay rate of the reverber-
ation, which can be represented as:

∆ = {3 log 10} /Fs. (2)

M60 is the number of frames corresponding to T60; M60 =
FsT60/NE . C is a constant representing RIR energy. The
CWF is obtained from the ratio between two exponentially
moving averages (EMAs) of the observed power spectra.
G(k,m) is the spectral gain function for dereverberation,
which can be represented as:

G(k,m) = min
{
1, R

(S)
X (k,m)/R

(L)
X (k,m)

}
, (3)

where

R
(·)
X (k,m) = α(·)PX(k,m) + (1− α(·))RX(k,m− 1). (4)

α(·) is an EMA coefficient. (S) and (L) represent shorter and
longer time constants, respectively, which are needed to ex-
press the condition α(S) > α(L). Finally, the dereverberated
signal Y (k,m) is obtained by: Y (k,m) = G(k,m)X(k,m).

3. PROPOSED DEREVERBERATION METHOD

A block diagram of the proposed dereverberation method is
shown in Fig. 1. Stationary noise power is calculated on a
basis of minimum statistics noise estimation (MSNE). Sta-
tionary noise is reduced by iterative, weak, sub-block-wise
spectral subtraction (IWSbSS). Before dereverberation, T60 is
roughly estimated (RTE), and dereverberation parameters are
estimated by using MTF. Iterative, quasi-parametric, CWF
(IQPCWF) reduces the reverberation.

3.1. Iterative weak sub-block-wise spectral subtraction

MSNE is one of the most common methods used to estimate
the power of stationary noises. In order to reduce compu-
tational cost, the minimum power spectrum is evaluated in
sub-blocks with noise at the minimum power level [17]. The
iterative, weak, spectral subtraction (IWSS) method has also
been proposed for improving speech quality [18–20]. IWSS is

used to restrain ‘musical noise’ artifacts which are generated
during noise reduction processing, and must estimate differ-
ent noise prototypes at different iterative stages. When using
MSNE, each noise candidate in a sub-block occurs at a dif-
ferent time interval, so the candidates are expected to differ
from one another. Therefore, sub-block-wise minimum noise
spectrum estimation can be considered as a sub-block noise
prototype, and can be subtracted at one stage of IWSS.

3.2. T60 estimation using an adaptive threshold operation
involving median filtering

In the acoustics research field, T60, the time it takes for a
sound to decay to 60 dB below its final power level, is tra-
ditionally used to represent reverberation time. It is usually
measured in the divided frequency bands, such as the octave
bands, for example. A basic frequency of 500 Hz is usually
used to determine T60 in the architectural acoustics field [21],
so frequency bins around 500 Hz are important when estimat-
ing T60. In the proposed T60 estimation method, reverberation
of the observed signal is tentatively separated only around 500
Hz, by using the quasi-complementary Wiener filter (QCWF)
described in Section 3.3.2 of this paper. The QCWF parame-
ters are fixed and should be ‘strong’, since tentative separation
is only performed to estimate T60.

Observed power spectra PX(k,m) can be separated into
early reflection (ER) and late reverberation (LR) components
using the statistical RIR model. The bin-wise ER spectra
are averaged over the frequency bins in the designated region
around 500 Hz, and the same process is also performed for the
LR spectra. The power envelope is calculated for both ER and
LR using the moving average from each averaged spectrum.
Median filtering is then applied to these envelopes to estimate
thresholds which can be used to identify activity. The total
power of the ER and LR components, P̃E,X and P̃R,X , re-
spectively, are calculated for the active intervals. Thus, T60

can be calculated as follows:

T̂60 ≈ {NE · 2∆}/
{
log

(
1 + Em

[
P̃E,X/P̃R,X

])}
, (5)

where Em[·] represents an expectation regarding frame index
m, and T̂60 is the estimated reverberation time.

3.3. Dereverberation using an iterative complementary
Wiener filter

3.3.1. Parameter estimation using MTF

EMA coefficients α(·) in Eq. (4) can be converted into forget-
ting factor ζ(·) = 1−α(·), which specifies how quickly the fil-
ter ”forgets” past sample information. When the z-transform
is applied to the EMA, dereverberation gain Eq. (3) is recal-
culated as:

G(k, ejωmTH ) =
1− ζ(S)

1− ζ(L)

1− ζ(L)e
−jωmTH

1− ζ(S)e−jωmTH
, (6)
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where ωm is the modulation angular frequency, and TH is
the time length of a frame shift. Eq. (6) illustrates how
dereverberation gain Eq. (3) corresponds to the first order
auto-regressive moving-average (ARMA) filter. In addition,
Eq. (6) can be divided into two filters,

G(k, ejωmTH ) = HL(ζ(L), e
jωmTH )HH(ζ(S), e

jωmTH ), (7)

where HL and HH represent low-pass and high-pass filters,
respectively.

MTF represents the loss of modulation as a result of re-
verberation [22]. MTF can also be formulated using the sta-
tistical RIR model [16]. Unoki [23] formulated MTF m(ωm)
as follows:

m(ωm) =

√
1 + {ωmT60/ (2Fs∆)}2. (8)

When the two coefficients of the ARMA filter, ζ(S) and
ζ(L), were estimated using the modified Yule-Walker method
and MTF in our preliminary experiments, dereverberation
performance was low. Therefore, a two-step optimization
method is proposed. First, MTF is only used to optimize the
coefficient of the high-pass filter HH . Then the Yule-Walker
method is applied to estimate the low-pass filter HL. For HH ,
the cosine term can be expanded using the Taylor series in the
amplitude response. Neglecting the higher-order terms of the
Taylor series, and comparing the coefficients of m(ωm) and
HH , the following relationship is obtained:{
ζ(L)/(1− ζ(L))

2
}
N2

H = {1/(2∆)}2 , (9)

where NH = THFs. This is a quadratic equation, so it has
two solutions. Considering the value range of the solutions,
ζ(L) can be obtained as follows:

ζL =

{
2 + (2NH∆)

2 −
√{

2 + (2NH∆)
2
}2

− 4

}
/2

(10)

The combined amplitude response, |m(ωm)||HH |, tends
towards a high-pass response due to omitting the higher-order
terms of the Taylor series, which results in over compensa-
tion. For the low-pass filter HL, the Yule-Walker method
is used to estimate coefficient ζ(S) of the first order AR
filter. HL compensates for high-pass amplitude response
|m(ωm)||HH |. Finally, G(k, z) in Eq. (6) is determined by 2-
step optimization, and dereverberation spectral gain in Eq. (3)
is obtained by T̂60 and MTF.

3.3.2. Quasi-parametric complementary Wiener filter

Dereverberation using Eq. (3) has performance limitations
when there are longer values for T60 [15]. As T60 ap-
proaches huge values, such as ∞, dereverberation spectral
gain approaches 1: limT60→∞ G(k,m) = 1. This means that
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Fig. 2. Theoretical performance of CWF and QCWF.

G(k,m) from Eq. (3) does not suppress LR when T60 is very
long. Quasi- and quasi-parametric Wiener filters (QWF and
QPWF) were proposed in [24,25] to achieve flexible noise re-
duction. If we introduce the concept of a QWF into the CWF
dereverberation method, spectral gain can be reformulated as:

F(k,m) = min

{
1,

R
(S)
X (k,m)

R
(L)
X (k,m) +R

(S)
X (k,m)

}
. (11)

For huge T60 values, this quasi-complementary Wiener filter
(QCWF) satisfies limT60→∞ F(k,m) = 0.5. Fig. 2 shows
the theoretical dereverberation performance of a CWF and a
QCWF. The theoretical CWF appears as Eq.(11) in [15]. The
theoretical QCWF is derived in the same manner as the CWF,
using the statistical RIR model and Eq. (11):

1/{e2∆NE/T60 + 1}. (12)

In Fig. 2, a crosspoint is found for the WF and CWF curves,
and this point is indicated by a black circle. When T60 is
over 1 second, CWF performance exceeds WF performance,
which means that the dereverberation performance of the
CWF deteriorates with longer reverberation times. On the
other hand, the performance of QWF always exceeds that of
the QCWF. When T60 is 1 second, reverberation is reduced by
6 dB. When T60 is 2 seconds, reverberation is reduced by only
3 dB. Therefore, for a T60 of under 1 second, the proposed
QWF-based method works properly, however for values over
2 seconds, it can be assumed that the proposed method will
not perform well. By introducing an additional parameter to
control the ‘strength’ of the QCWF, a quasi-parametric CWF
(QPCWF) can be obtained as follows:

G(k,m) = min

{
1,

R
(S)
X (k,m)

R
(L)
X (k,m) + w(T60)R

(S)
X (k,m)

}
,

(13)

where w(T60) is a weighting function, for example w(T60) =
T60. Intuitively, for shorter T60 values, the ‘strength’ term
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w(T60)R
(S)
X (k,m) should be small to prevent excessive LR

suppression. For longer T60 values, the weighting should be
large in order to increase dereverberation performance.

3.3.3. Iterative complementary Wiener filtering

For dereverberation, the LR spectrum is usually estimated
using a delaying operation which delays the averaged power
spectrum, as discussed in [11, 26], for example. A QPCWF
can estimate the LR component without a delaying operation,
however, decreasing memory consumption, which is always
beneficial, especially when dereverberation is performed
using digital signal processors. As a further refinement,
the proposed method uses an iterative spectral modifica-
tion technique known as iterative, weak, spectral subtraction
(IWSS) [18–20]. In the i-th iterative stage, the QPCWF
estimates the LR component as follows:

P̃
(i)
R,X(k,m) =

(
1− G(i)(k,m)

)
P

(i−1)
X (k,m), (14)

where P̃
(i)
R,X(k,m) represents the LR component in the i-th

stage, the k-th frequency bin, and the m-th frame. G(i)(k,m)

is the QPCWF in i-th stage. P
(i)
X (k,m), which is the en-

hanced power spectrum in the i-th stage, is represented as
follows:

P
(i)
X (k,m) = (15)

max
{
P

(i−1)
X (k,m)− βP̃

(i)
R,X(k,m), ηR

(L,i)
X (k,m)

}
,

where R
(L,i)
X (k,m) represents the EMA of the power spectra

at the i-th stage, which is calculated in the same manner of
Eq. (4). Dereverberation gain is calculated as: A(i)(k,m) =

P
(i)
X (k,m)/PX(k,m) in the i-th stage. Finally, all gains are

multiplied by each other: A(k,m) =
∏

i A(i)(k,m).

4. DEREVERBERATION EXPERIMENTS

In this section, the proposed method (IQPCWF) is compared
to the following conventional dereverberation methods: Spec-
tral Subtraction (SS), proposed by Lebart [11], and Optimal
Modified Minimum Mean-Square Error Log-Spectral Ampli-
tude (OM-LSA), proposed by Habets [26], as well as to our
previously proposed method (CWF) [15]. These methods are
evaluated with our proposed noise reduction method incorpo-
rated, except for OM-LSA, which includes its own noise re-
duction technique. In the case of OM-LSA, minimum statis-
tics are used for stationary noise power estimation.

4.1. Simulation conditions

The REVERB challenge dataset consists of simulated data
(SimData) [27] and real recordings (RealData) [28]. The sam-
pling frequency is 16 kHz. SimData includes three types

Table 1. Dereverberation parameters

CWF [15]
α(·) calculated by estimated T60

IQPCWF (proposed)
α(·) calculated by estimated T60

β 1.0 (subtraction)
η 0.64 (flooring)

num. of iterations 5
OM-LSA [26]

q 0.2 (speech absence)
ηdz 0.95 (smoothing)
ηaz 0.8 (0 ≤ ηaz ≤ ηdz )
Tl 50 msec

SS [11]
β 0.9 (smoothing)
T 50 msec
λ 0.1 (flooring)

(Parameters taken directly from each study.)

of rooms, and the T60 of the three rooms are 0.25, 0.5 and
0.7 seconds. RealData includes one type of room, and T60

is 0.7 seconds. Two microphone positions, near and far, are
included in both SimData and RealData. All of the derever-
beration methods employ STFT for time-frequency analysis.
The STFT parameters are the same for all the methods; the
window size is 1024, the FFT size is 2048, and the shift size
is 256. For noise reduction, the number of the sub-blocks is
9, which means that block length is about 3 seconds. T60 is
estimated every 30 frames, which corresponds to 480 msec.,
and envelopes are kept for a maximum of 2 seconds. The
parameters of each method’s dereverberation algorithms are
determined based on each method’s reference literature, as
shown in Table 1). For CWF and IQPCWF, the EMA param-
eters are calculated using the proposed method as described
in Section 3.3.1.

4.2. Processing delay

The processing delay can be separated into two delays: the
signal delay for input/output, and the T60 estimation delay.
The proposed method is a real-time operation, since the sig-
nal is processed frame-by-frame. Processing delays for the
proposed method are as follows:

• signal delay: 64 msec (equal to the signal delay of spec-
tral subtraction),

• T60 estimation delay: 480 msec (30 frames)

The proposed method uses STFT, and the signal delay equals
the window size. This delay is the same as that of conven-
tional noise reduction methods such as spectral subtraction,
for example. The proposed method outputs T̂60 every 30
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frames. The T60 estimation can store 2 seconds of envelope
data, therefore a stable T̂60 value can be expected 2 seconds
from the beginning of the observed signal.

4.3. Discussion of experimental results and computa-
tional costs

Four mandatory objective measures are required for the
REVERB Challenge: Cepstral distance (CD) [29], Log-
likelihood ratio (LLR) [29], Frequency-weighted segmental
SNR (FWSegSNR) [29] and Speech-to-reverberation mod-
ulation energy ratio (SRMR) [30]. Fig. 3 and Fig. 4 show
our experimental results for the far and near positions, re-
spectively. Results are obtained from real-time operation,
and are averaged for all utterances. Bars in the figures rep-
resent experimental blind dereverberation results. Circles in
the figures show the results under the ‘oracle T60’ condition,
which is a fixed T60 condition designated in the experimental
instructions of the REVERB challenge.

The proposed IQPCWF method achieved higher SRMRs
than the CWF and SS methods, meaning that the proposed
method can more effectively suppress LR than the other
two methods. With respect to the distortion measures CD,
LLR and FWSegSNR, the proposed method achieved sim-
ilar performance to CWF. When comparing SS, CWF and
the proposed method, levels of distortion vary according
to the acoustic conditions, making it difficult to determine
which method is more effective overall. Under all conditions,
OM-LSA achieved high SRMR values, however levels of
distortion were significantly worse when using OM-LSA.
These findings suggest that the proposed method achieves a
significantly better balance of dereverberation performance
and distortion reduction than conventional methods.

The proposed method’s T60 estimation is computation-
ally efficient, but inaccurate. For OM-LSA and SS, there
are significant differences between real-time T60 estimation
and estimation under the ‘oracle’ condition, as shown in
Fig. 3 and Fig. 4. This is important, because OM-LSA and
SS are sensitive to the accuracy of T60 estimation. In spite
of its ‘rough’ T60 estimation, the proposed method proved
to be rather robust, because only negligible differences are
observed between real-time T60 estimation results and T60

estimation results under the ‘oracle’ condition.
The computational cost of each of these dereverberation

methods was evaluated using the real-time factor (RTF), and
the results appear in Table 2. About three times the RTF is
required by the proposed method, in comparison to minimum
variance distortionless response (MVDR), which is shown as
a reference. CWF’s cost is less three times as large as the
cost of MVDR, and is thus the most computationally effi-
cient of the examined methods. In comparison, the RTF of
the proposed method is 1.3 times that of CWF. Although the
proposed method uses iterative spectral processing, it requires
only 1.1 times the RTF of the SS method, which involves only

Table 2. Computational cost

Method Real Time Factor
RealData SimData

MVDR (reference) 0.017 0.016
CWF 0.038 0.037

IQPCWF (proposed) 0.050 0.048
OM-LSA 0.070 0.067

SS 0.045 0.045

one-shot spectral subtraction. The OM-LSA estimator uses
an incomplete gamma function which includes numerical in-
tegration, which is why the computational cost of OM-LSA
is so high.

5. CONCLUSION

In this study, a single-channel, computationally restrained,
blind dereverberation method was proposed. The proposed
method is a real-time operation, consisting of iterative, weak,
sub-block-wise spectral subtraction for noise reduction, T60

estimation, parameter optimization using MTF, and employs
an iterative, quasi-parametric, complementary Wiener filter
for dereverberation. Experimental evaluation showed that the
proposed method achieves a better balance of dereverbera-
tion and distortion performance than conventional methods.
Additionally, in spite of its ‘rough’ estimation of T60, the
proposed method is significantly robust under various acous-
tic conditions. Even though the proposed method involves
iterative processing, computational cost is sufficiently con-
strained. Signal delay occurs as the result of STFT process-
ing, but this delay is equivalent to the delay caused by conven-
tional noise reduction methods such as spectral subtraction.
Future work includes parameter optimization for the iterative
method, as well as evaluation of the resulting subjective sound
quality.
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