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ABSTRACT

We present our contribution to the REVERB Challenge in
this paper. A multi-channel speech dereverberation sys-
tem combines cross-channel cancellation and spectral de-
composition. The reverberation is modeled as a convolu-
tion operation in the spectral domain. Using the general-
ized Kullback-Leibler (KL) divergence, we decompose the
reverberant magnitude spectrum into clean magnitude spec-
trum convolved with a deconvolution filter. The magnitude
spectrum is constrained and regularized by non-negativity
and sparsity, respectively, while the deconvolution filter is
constrained by non-negativity and cross-channel cancella-
tion. Spectral decomposition of individual channels and
cross-channel cancellation are jointly optimized by a mul-
tiplicative algorithm to achieve multi-channel speech dere-
verberation. Experimental evaluations on “speech enhance-
ment task™ are carried out according to the evaluation guide-
lines of the REVERB challenge, showing promising results.
The objective metrics for measuring reverberation are inves-
tigated through the algorithm evaluation.

Keywords: REVERB challenge, Multichannel derever-

beration, Spectral decomposition, Generalized KL divergence,

Sparsity, Cross-channel cancellation.

1. INTRODUCTION

Reverberation is an acoustic phenomenon that happens when
a sound wave is traveling in a physical enclosure and repeat-
edly reflected by the reflective surfaces of the enclosure.
The multiple reflections cause the received sound (e.g. a
distant microphone or a listener) to last even when orig-
inal sound stops. The combinations of direct transmitted
and reflected sound wave affect the intelligibility of speech
or perception of the received acoustic wave. The objec-
tive comes to reduce reverberation and improve the qual-
ity of the signal. Substantial progress has been made in
the field of reverberant speech signal processing, including
both single- and multi-channel dereverberation techniques.
Despite these studies, existing reverberant speech enhance-
ment algorithms, however, do not reach a performance level

demanded by many practical applications. Reverberation
causes a noticeable change in speech quality. Berkley and
Allen [1] identified that two physical variables, reverber-
ation time Tgo and the talker-listener distance, are impor-
tant for the reverberant speech quality. The universally ac-
cepted set of objective quality measures has not been fully
established for evaluating reverberant speech enhancement
algorithms. The REVERB challenge is designed to evalu-
ate state-of-the-art algorithms and direct the researchers to
have comprehensive understanding of evaluation metrics for
dereverberation algorithms.

Our contribution focuses on recovering the subband spec-
trum of an original speech signal from its reverberant ver-
sion. The problem is formulated as a blind deconvolution
problem with non-negative constraints, regularized by the
sparse nature of speech magnitude spectra. However, sin-
gle channel decomposition mathematically allows too much
freedom, which possibly makes the solution deviate from
the true solution. According to our paper [2], we constructed
an effective cost function by combining multi-channel based
cross-channel cancellation and spectral decomposition on
individual channels to achieve multi-channel dereverbera-
tion. By investigating the criterion of decomposition, we
proposed to incorporate generalized KL divergence as the
decomposition metric. The outline of this paper is as fol-
lows. In Section 2 the related work is described and the
subband deconvolution is verified to be equivalent to that in
time domain. In Section 3 the main contribution of multi-
channel speech dereverberation method is presented. The
experiment setup for REVERB challenge and evaluations
are presented and discussed in Section 4. We conclude the
algorithm in Section 5.

2. SUBBAND SPECTRAL DECONVOLUTION

The frequency domain blind dereverberation for reverber-
ant speech mixtures has been extensively studied, because
it can learn each frequency individually and selectively with
much less computation under the assumption that convolu-
tion in the time domain can be represented as multiplication



in the frequency domain. However, when we perform a fre-
quency domain decomposition via short-time Fourier trans-
form (STFT), we are often aware that the source separa-
tion or deconvolution filter should be longer enough than the
conventional frame length (10 ms to 30 ms) for speech pro-
cessing, because the reverberation time, typically 200-300
ms even in a small office environment, far exceeds the frame
length. On the other hand, if we increase the frame length to
make the filter length long enough under the same assump-
tion, it results in decreasing the super-Guassianity of each
frequency channel and consequently deteriorate the blind
source separation or dereverberation performance. This fun-
damental limitation on frequency domain processing has
been reported [3], yet still recognized as unavoidable lim-
itation. The exact deconvolution operation in the STFT do-
main is shown below, demonstrating that it is similar to the
time domain deconvolution in each frequency bin [4].

Proposition 2.1 Deconvolution in the time domain by a fil-
ter with longer length than a frame length used for subband
decomposition is equivalent to the deconvolution in each
subband again.
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Proof. The equivalence between the subband domain de-
convolution operation and the original time domain decon-
volution can be demonstrated by taking an inverse Fourier
transform on (2.1) and summing them over all possible frames,
which is eventually shown to be equivalent to the results
when we simply implement the deconvolution in the time
domain with the original incoming signal and filter before
applying subband decomposition. In the time domain, a de-
convolution can be performed using a filter h[t] with an in-
coming signal slt).

(2.4)
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From the perspective of subband deconvolution, the decon-
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Note that with a careful choice of the window function, we
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Therefore, s[t] = §[t], and the subband domain deconvolu-
tion represented in (2.1) is a correct way of implementing a
deconvolution in the subband domain.

The problem in [5, 6] is formulated as a single-channel
subband blind deconvolution problem. The method in [6]
differs from [5] in the domain of the model: instead of
power spectrum in Fourier spectral domain, it works in Gam-
matone spectral domain, based on magnitude spectrum. The
two methods try to estimate the (power) spectral magnitude
of clean speech S through a decomposition of the reverber-
ated speech (power) spectral magnitude X into its convolu-
tive components S and H, where H is the (power) spectral
magnitude of the room impulse response. The least-squares
error criterion, i.e. [5 norm, is formulated in [5, 6] to achieve
the decomposition. In general, reverberation compensation
algorithms should not require a priori knowledge of nature
of the reverberation. The model in [5, 6] represents the re-
verberation effects as the filter H, whose parameters are not
observed directly. Thus, the problem of decomposition is
highly unconstrained. There exist infinitely many decom-
positions of X into S and H. To constrain the feasible
space, two constraints are exploited in [5, 6]. One is that
the (power) spectral magnitude are non-negative, i.e. all the
elements in S and H are > 0. The second assumption is the
clean (power) spectral magnitude S is sparse.



By considering the mathematical formulation, it is as-
sumed that actual observation sequence is Z[n, k]. Z[n, k] ~
X[n,k] = S[n,k] *x H[n, k], where * is convolution, n
denotes index of time frame and k denotes the frequency
bin. Since the length of impulse response filter in time do-
main might be longer than the window for short time Fourier
transform (STFT), H in magnitude spectral domain remains
to be convolved with the signal S. The difference between
Z and X can result from observation noise or from the er-
ror in decomposing Z into convolutional components .S and
H. The objective is to minimize the mean-squared error
between Z and X. After imposing the non-negativity and
sparsity constraints, the objective function is defined in each

frequency bin as
Z S[m, k|H

+)\ZSzk (2.7)
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s.t. Sin,k] >0, H[n, k] > O,ZH[n,k} =1

where H|[n, k] is constrained to sum to 1 to avoid scaling
problems. [; norm is selected to apply sparsity regulariza-
tionon S.

The above model is an approximation and will in gen-
eral incur an approximation error e as follows

X[n, k] = X[n, k] + e[n, k] = S[n, k] « H[n, k] + e[n, k]

(2.8)
It is empirically observed in [6] that the approximation er-
ror e is lower in the magnitude spectral domain than in the
power spectral domain. Thus, working in the magnitude
spectral domain incurs lower error. Experimentally they
found that the power of e is usually about 13 dB below the
power of X in the power spectral domain. In contrast, in the
magnitude spectral domain, they observed an approxima-
tion error attenuation of 17dB. Thus, working in the magni-
tude spectral domain incurs lower error.

3. MULTICHANNEL FORMULATION

Instead of inferring the filter H parameters through the ob-
served single channel data X, we attempt to jointly esti-
mate multi-channel (without loss of generality, we use dual-
channel as an example) filters H;,7 = 1, 2, and clean mag-
nitude spectrum S by the reverberant speech magnitude spec-
trum X;,7 = 1,2. This problem is however highly uncon-
strained, which renders infinitely many decompositions of
X, into S and H;. By inheriting the constraints from above
single channel model, extra new constraints are incorpo-
rated for building the multi-channel dereverberation model.

e Different channels estimate the same magnitude spec-
trum of clean speech S.

e Cross-channel cancellation enforces the filters H;,7 =
1, 2, to resolve the spatial difference between chan-
nels. The cross-channel cancellation error is to be
minimized.

Back to time domain, the two microphones capture the
reverberant speech as
x;[n] = s[n] * hi[n], i=1,2 (3.9)

Suppose h;[n],i = 1,2 can be successfully resolved, then
by performing cross-convolution and subtraction, we have

x1[n] * ho[n] — xa[n] * hi[n]
=s[n] x hi[n] * ha[n] — s[n] * ha[n] * hi[n] =0 (3.10)

The cross-channel cancellation in spectral domain becomes

Xi[n, k]xHa|n, k] — Xa[n, k] * Hy[n, k] = S[n, k] x Hy[n, k]

x Ha[n, k| — S[n, k] x Ha[n, k] * Hy[n,k] =0
3.11)

After imposing the constraints, the objective function in each
frequency bin becomes
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The criterion metric used for spectral decomposition is [y
norm in (3.12). However, it can be replaced by any appro-
priate metric D. D(z|y) for generalized KL divergence is
defined as D(z|y) = 2 log ¢ — x +y, where z corresponds
to Z as the observation, while y corresponds to S x H; (x
is convolution) as the underlying model. The optimization
process for spectral decomposition can be understood as
maximizing the probability that the observation Z is gen-
erated by the underlying model with parameter S * H;. Iy
norm in (2.7) and (3.12) indicates Gaussian distribution of
the maximum likelihood function, that is equivalent to the
least mean squares estimation between Z and S * H;. How-
ever, despite the fact that Z is a spectrum distribution den-
sity, it is desirable that the likelihood function is only de-
fined on the non-negative axis. By an appropriate normal-
ization, the Poisson distribution is a representative example



of such a probability density function. On the other hand,
the generalized KL divergence is asymmetric, giving more
penalty to positive errors, and thus emphasizes the good-
ness of fitting between spectral peaks [7]. By plugging in
the exact form of divergence, the objective function is

Zjli, k]
Min.E = Zz; zk:logZ ST, K, [i —m, K]
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s.t. S[n.k] >0, Hln, k] >0, Hjln, k] =1,j = 1,2

Next, the goal is to derive an iterative estimation algo-
rithm formally equivalent to the EM algorithm without mak-
ing use of Bayes’ rule. Guided by the idea of NMF [8] and
EM algorithm, we derive an efficient iterative algorithm that
ensures a monotonic decrease (convergence to a stationary
point) in the objective function and simultaneously, the non-
negativity of the parameters. The objective function E is a
function of variable S and H;,7 = 1,2. Fix two of the
three variables, £ is a function of one variable, denoted as
E(z). We need to find an auxiliary function G(x,z’) for
E(z) such that G(z,2’) > E(z), and G(z,x) = E(x). It
is obvious that F(x) is non-increasing under the update

' = argmin G(z, 2")
x

(3.14)
Since E(z'T!) < G(2!*, ') < G(at,2t) = E(a?), the
above statement holds. By using Jensen’s inequality on the
convex logarithm function, we construct the auxiliary func-

tions G(S,S"), G(H;, H) for E(S) and E(H}), respec-
tively.
G(S,8") = ZZZSm k|H;[i — m, k]
tm, k1H;[i — m, k]
_Z,Zi;z Z St[m’ k]H [i —m/ k]
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(log S[m, k) H;[i —m, k] — Z ST B H i —
+Z Z St +St[ k) (3.15)

The auxiliary function for E(H;) can be derived similarly.
In the auxiliary function above, we omit the terms without
the corresponding variable, since those terms vanish while

taking derivative w.r.t. the desired variable. The iterative al-
gorithm for solving (3.13) is shown in (3.16). By tuning the
trade-off parameters 8 and )\, we can achieve good quality
for the estimated speech signal.

Initialize S = Z;,j =1 or 2
For Iter =1 : MaxIter

(i) X;li, k] = S[i, k] = H;[i, k], 7=1,2
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end For

By extending the dual-channel model to any M -channel
model, the optimization formula (3.13) is modified as

Min.E = ZZD (i, k] S[m, k|H
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s.t. S[n.k] >0, Hjln, k] >0, Hjln, k] =1,j=1,2,...
n

The schematic diagram of the proposed multi-channel dere-
verberation algorithm is shown in Fig. 1.

4. EVALUATION

Experimental results shown in this paper are all carried out
according to the guidelines of the REVERB challenge [9].
We contribute on the speech enhancement challenge task of
enhancing noisy & reverberant speech with multi-channel
technique and evaluating the enhanced utterances in terms

m', k] of objective evaluation metrics in this paper. The opera-
)

tion environment is Matlab 2013a in Windows 7 with CPU
3.30GHz (8 cores), 2GB RAM.

4.1. Metrics

According to REVERB challenge, cepstrum distance (CD),
log likelihood ratio (LLR), frequency-weighted segmental

Zz S[’L—n,k} +52121[2—7’L,k]W1[Z,

k]
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Figure 1: The schematic diagram of constrained multi-
channel (dual channel as an example) speech dereverber-
ation based on sparse and non-negative spectral decompo-
sition and cross-channel cancellation

SNR (FWSNR) [10], speech-to-reverberation modulation
energy ratio (SRMR) [11], computational cost (wall clock
time in sec., WCT), and perceptual evaluation of speech
quality (PESQ) are incorporated for the system evaluation.

4.2. Dataset

All the reverberant utterances are provided as 1-channel, 2-
channel, and 8-channel recordings for development test set
and evaluation test set, respectively [9]. The whole dataset
for development and evaluation contains SimData and Re-
alData. SimData are utterances from the WSJCAMO cor-
pus [12], which are convolved by room impulse responses
(RIRs) measured in different rooms. Recorded background
noise is added to the reverberant test data at a fixed signal-
to-noise ratio (SNR). It simulates 6 different reverberation
conditions: 3 rooms with different volumes (small, medium
and large size), 2 types of distances between a speaker and
a microphone array (near=50cm and far=200cm). RealData
are utterances from the MC-WSJ-AV corpus [13], which
consists of utterances recorded in a noisy and reverberant
room. It contains 2 reverberation conditions: 1 room (large
size), 2 types of distances between a speaker and a micro-
phone array (near= 100cm and far= 250cm).Recordings are
measured with an array (8-ch circular array with diame-
ter of 20 cm, uniformly distributed omni-directional micro-
phones) that has the same array geometry as the ones used
for SimData. For the SimData, noise is added to the re-
verberant speech with SNR of 20dB. Rereverberation time
(T60) of small, medium, and large-size rooms are about

0.25s, 0.5s, 0.7s, respectively. On the other hand, a meet-
ing room used for the RealData recording has reverberation
time of 0.7s. For the SimData and RealData, it can be as-
sumed that the speakers stay still within an utterance.

4.3. Parameter setup

The STFT is computed using a Hamming window that is 64
ms long with a 48 ms overlap. A\ is set to be the propor-
. . SN Zi,k]x1073 . ’
tionate weights ==1—2~~——— as the processing doesn’t
starts until the whole sentence is read in. NV is the number
of time frames that are taken for averaging, and set to be the
total number of frames within a sentence. 3 is set at 10. S'is
initially equal to Z. H; is initially set to be an exponentially
decaying envelope, with the length 12 time frames, which is
approximately 240 ms in time domain.

4.4. Evaluation results and discussion

The proposed dereverberation algorithm processes utterance
streams one by one. The buffer size is simply the sen-
tence size, though this could be reduced to tens of ms, i.e.
a few time frames to speed up the computation. Mean-
while, as our algorithm runs independently in each subband,
it could be parallel executed on multi-thread. The compu-
tation time can be further reduced as much as % of single-
thread processing, where N is the number of the threads. A
noise suppression post processing (optimally-modified log-
spectral amplitude speech estimator [14]) is applied to the
dereverberated signal to suppress the background noise as
an option. Table 1 lists the performance measurements of
the proposed algorithm system for the REVERB challenge.
The evaluation were carried out based on 4-channel derever-
beration plus post denoise processing. The 4 microphones
correspond to channel 1 to 4 of the provided SimData and
RealData, while room 1, 2 and 3 are the rooms with small,
medium and large size for SimData, respectively (Room 1 is
large room regarding RealData). The reference wall clock
time is calculated based on a two-microphone beamform-
ing algorithm in single thread (provided by the REVERB
challenge). As the cost of our algorithm varies while us-
ing different number of threads, for a fair and clear illustra-
tion, we evaluate our dereverberation algorithm by single-
thread processing as well. According to Table 1, the real
time factor of our 4-channel and single-thread based algo-
rithm is around 1.95, compared to 0.02 of reference pro-
cessing, while this number for 2-channel and single-thread
based our algorithm is around 1.23 in the experiment done
in Fig. 3 below. Besides WCT, all other metrics for speech
enhancement task are used to evaluate the proposed algo-
rithm system. From rooml to room3 of SimData, the en-
hancement becomes more and more significant as Ty in-
creases from small room to large room. As introduced in
Section 1, besides reverberation time Tgg, another factor



Table 1: Performance measurements of speech enhancement task, comparing original reverberant & noisy streams with

enhanced streams

SimData RealData
Room 1 Room 2 Room 3 Ave. Room 1 Ave.
Config Metrics Near Far Near Near Far - Near Far -
CD org 199 267 463 521 438 496  3.97 - - -
CD enh 339 350 358 416  3.60 421 3.74 - - -
4ch 1R org 035 038 049 075 065 084 058 ; ; -
derever- 71 R enh 056 0.1 0.67 082 072 079  0.68 - - -
beration  pwenrorg 812 668 3.35 1.04 227 024 362 - - -
+denoise  pwonienh 8.8 8.55 8.06 6.84 7.15 6.00 7.46 - - -
Lengthof  spMRorg 450 458 374 297 357 273 368 317 319  3.18
deconvo-  gpMRenh 479 5.04 465 436 466 409 460 595 6.02 598
lution  ppgoorg 214 161 140  1.19 137 1.17 1.48 - - -
fiter His  ppgoenn 192 186 168 145 166 136  1.66 ; ] :
12 frames  yop of 62.12 6197 6405 6364 6196 61.50 6254 2876 2664 27.70
WCT 5578.9 5534.1 59944 5829.8 56455 5631.5 57024 2469.5 22299 2349.7

degrading speech quality is the speaker-to-microphone dis-
tance. This could be seen from the table by comparing per-
formance between Near and Far. It is also known that the
dereverberation and denoise algorithms make speech atten-
vated and distorted more significantly in the low reverber-
ation condition. Regression can be found in Rooml Near,
such as PESQ. Constant improvement of the proposed al-
gorithm is proved by the metrics, such as SRMR, FWSNR
and PESQ. Table 2 investigates the correlation between the
five objective metrics for measuring dereverberation perfor-
mance. The correlation is measured by the sequences of
enhancement §’s in 6 SimData conditions presented in Ta-
ble 1 (0 = enh — org for FWSNR, SRMR and PESQ as
larger enh indicates good performance, while § = org—enh
for CD and LLR as smaller enh indicates good signal qual-
ity). In Table 2, those numbers in bold indicate high corre-
lation. It shows that FWSNR, SRMR and PESQ behaves
similarly for measuring the presented dereverberation al-
gorithm, which are likely more appropriate for reverberant
speech quality measurement than CD and LLR.

Table 2: Correlation between metrics in the evaluation.

CD LLR FWSNR SRMR PESQ

CD - 0.15 0.66 0.58 0.69
LLR 0.15 - -0.45 -049  -0.33
FWSNR 0.66 -0.45 - 0.99 0.87
SRMR 0.58 -0.49 0.99 0.82

PESQ  0.69 -0.33 0.87 0.82 -

We compared the 4-channel based dereverberation (de-

convolution filter H length is 12 frames) plus post denoise
processing with other two variants, 4-channel based dere-
verberation (deconvolution filter / length is 36 frames) plus
post denoise processing and 4-channel based dereverbera-
tion (deconvolution filter H length is 12 frames), respec-
tively. The algorithm configuration in Table 1 performs best
among the three variants. It shows that post denoise pro-
cessing improves the speech quality in most metrics except
for LLR by comparing blue and red curves. Compared with
36 frames, 12 frames for deconvolution filter H is good
enough in all metrics but SRMR, and shorter filters reduce
the computation and memory significantly.

Fig. 3 illustrates the performance difference between 2-
channel and 4-channel based algorithms. Both of them carry
out dereverberation plus denoise processing with the length
of deconvolution filter H as 12 time frames. Apparently,
4-channel algorithm wins in all metrics for almost all the
acoustic conditions. However, we should realize that real
time factor is lifted up to 1.95 from 1.23 in single-thread
computing.

5. CONCLUSION

We have presented the constrained multi-channel speech dere-
verberation method based on spectral decomposition un-
der generalized KL divergence and cross-channel cancel-
lation. An iterative algorithm is presented for the optimiza-
tion. The proposed multi-channel speech dereverberation
system could substantially improve the speech quality on
both simulated data and real data of REVERB challenge.
Various metrics are investigated based on the presented al-
gorithm, among which FWSNR, SRMR and PESQ are highly
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Figure 2: Performance comparison with/without post pro-
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correlated and proper for reverberation measurement. Fu-
ture work should extend the current evaluation of speech
enhancement to ASR evaluation.
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