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ABSTRACT

In this paper, we present our contribution to the REverberant Voice
Enhancement and Recognition Benchmark (REVERB) challenge. We
propose a multichannel dereverberation algorithm which enhances
a target speech signal in a reverberant environment. The algorithm
consists of two main steps. First, the directive component of the
sound field is extracted from the microphone signals. Second, sparse
recovery is employed to beamformed the extracted directive signals
towards the target speaker. Experiments were carried out on the
evaluation dataset of the challenge. The results of these experiments
indicate that the method effectively de-reverberates the signals.

Index Terms— Dereverberation, microphone array, sparse re-
covery, beamforming, subspace methods.

1. INTRODUCTION

Reverberation is one of the major challenges in acoustic signal pro-
cessing problems. It degrades speech quality and speech intelligibility,
and the performance of automatic speech recognition (ASR). The
problem of speech dereverberation has received a lot of attention from
the 1970s until now [1] and a number of systems have been devel-
oped. Dereverberation techniques can be grouped into the following
three categories [2]. (1) Inverse filtering techniques: These methods
design inverse filters to compensate the reverberation by estimating
the room impulse responses (RIRs) blindly using the microphone sig-
nals [2]. (2) Beamforming techniques: These techniques estimate the
Direction of Arrival (DOA) of the target speech signal and reflections,
so as to form a beam in the direction of the target signal and direct
nulls at reverberation signals [3]. (3) Model-based techniques: These
techniques rely on the availability of parametric models that reflect
the underlying speech process and acoustic systems. The parameters
of model are estimated from the microphone signals, and then used
to reconstruct the source signal [4, 5].

In this paper, we present our contribution to the Speech Enhance-
ment task (SE) of the REVERB Challenge. Our approach can be
described as an adaptive beamforming technique and is comparable
to Asano’s subspace method [6]. First, we separate the microphone
signals into a diffuse and a direct component. The technique used
for this step is that of [7]: the microphone signals are projected
onto a subspace which corresponds to the directive part of the sound
field. Second, the obtained directive signals are further beamformed
towards the direction of the target. In order to calculate the beam-
forming weights, the signals are decomposed as a series of plane
waves using a sparse-recovery algorithm. As demonstrated in our
recent work [2, 7–10], sparse recovery can be used to localise mul-
tiple sound sources simultaneously. Note that our sparse recovery
approach is based on the assumption that the sound field consists of
a few dominant directional components. Therefore, it is generally

not robust to the presence of noise or reverberation. The use of this
sparse recovery approach is made possible here because it is applied
to the directive component of the sound field.

Note that sparse recovery is not necessarily incompatible with
reverberation, as shown in recent work by Asaei and colleagues [11].
Despite the apparent complexity of the reverberant sound field, sparse
recovery methods may be employed for speech enhancement because
the sound field originates from a few sound sources in the typical
scenario. However, by contrast with the method described in this
paper, one must then model how reverberation affects a source located
in a particular location of the room. In [11], for instance, an image-
source model is employed.

The structure of the paper is as follows. Section 2 begins by
briefly describing the model of speech signals in the reverberant
environment. The direct / diffuse separation method is presented in
Section 2.1. Section 2.2 describes the sparse recovery approach to
de-reverberate the microphone signals. The simulation results are
described in Section 3 and conclusions are drawn in Section 4.

2. METHODOLOGY

We begin by introducing a model for the speech signal in the rever-
berant room. In the time-frequency domain, we express the L signals
recorded with the microphone array as the combination of Q plane
waves incoming from every direction in the horizontal plane. In other
words, we apply the so-called narrowband approximation [12] and
express the vector, x(m, f), of the microphone Short Term Fourier
Transform (STFT) samples for time step m and frequency bin f as:

x(m, f) = A(f) s(m, f) , (1)

where

x(m, f) = [x1(m, f), x2(m, f), . . . , xL(m, f)]ᵀ , (2)

s(m, f) is the vector of the Q plane wave signals:

s(m, f) = [s1(m, f), s2(m, f), . . . , sQ(m, f)]ᵀ , (3)

A(f) is the matrix of the frequency responses from the plane waves,
incoming from azimuthal directions θ1, θ2, ..., θQ, to the micro-
phones:

A(f) = [a(θ1, f),a(θ2, f), . . . ,a(θQ, f)] ,

a(θq, f) = [a1(θq, f), . . . , aL(θq, f)]T , (4)

and (.)ᵀ denotes the matrix or vector transpose. The manifold matrix
A(f) is calculated with the assumption that the microphone array is
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comprised of L ideal omnidirectional microphones distributed around
a circle of radius R, i.e.:

al(θq, f) = ei
2πf
c
R cos(θq−θl) (5)

where c is the speed of sound, assumed to be 343 m.s−1. Note that
the plane-wave directions are distributed evenly around the circle. As
well, the number of plane-wave directions is chosen to be very large
(Q=180 in this work), such that the target non-reverberant signal can
be modelled as the contribution of only one or two plane-waves. On
the contrary reverberant signals are modelled as a mixture of plane
waves incoming from every direction. For brevity of notation we
omit the frequency dependence in the following.

2.1. Direct / diffuse separation

The first step in our dereverberation method is the separation of the
microphone signals into a directive and a diffuse components. This
technique is similar to that described in [6] and [7]. The diffuse
component of the sound field is expected to consist mostly of the
late room reflections and microphone self noise, while the directive
component is expected to consist of the direct sound and salient early
reflections. Nevertheless, note that we make no formal hypothesis on
the relative presence of early reflections in the directive component
of the sound field.

2.1.1. Singular-beam domain

We begin by considering the case of a perfectly diffuse sound field.
A perfectly diffuse sound field can be modelled as the sum of many
plane waves, evenly distributed in space, the waveform of which have
equal energies and are perfectly uncorrelated. The correlation matrix
of the plane wave signals, C

(dif)
s , is then given by:

C(dif)
s = ν I , (6)

where ν is the power of the plane waves and I denotes the identity
matrix.

In order to separate the directive and diffuse components of the
sound field, we first transform the microphone signals to a domain in
which the correlation matrix of the sensor signals is proportional to
the identity matrix in the presence of a perfectly diffuse sound field.
We refer to this domain as the singular beam domain, as it is related
to the singular vectors of the array manifold, A. The singular vectors
of the manifold matrix may be regarded as the modes of the array,
hence they are referred to as ”array modes” in [13]. The vector of the
singular-beam signals, b(m), is given by:

b(m) = Ψ−1UHx(m) = ΦHs(m) , (7)

where (·)H denotes the conjugate-transpose operation and U, Ψ and
Φ are the matrices of singular vectors and values of matrix A, i.e.:

A = UΨΦH . (8)

It can be easily verified that, in the presence of a perfectly dif-
fuse sound field, the correlation matrix of the singular-beam signals,
C

(dif)
b , is proportional to the identity:

C
(dif)
b = ΦHC(dif)

s Φ = νΦHΦ = ν I . (9)

2.1.2. Diffusivity Estimation

In the reverberant speech scenario, the sound field can be modelled
as the sum of a perfectly diffuse component, the reverberation, and
a perfectly directive component, the non-reverberant sound field
emitted by the speaker. Hence, the relative amount of reverberation in
the sound field can be estimated as the relative energy of the diffuse
sound field component, which we refer to as the diffusivity, β(m)
[14, 15]. In order to estimate the diffusivity of the sound field, we
first estimate the correlation matrix of the singular-beam signals as:

Cb(m) = (1− αC) Cb(m− 1) + αC b(m)bH(m) , (10)

where αC is a forgetting factor. We then decompose Cb(m) in terms
of its eigenvalues and eigenvectors as:

Cb(m) = V Σ VH , (11)

where V is the matrix of the eigenvectors and Σ is the diagonal
matrix, the coefficients of which are the eigenvalues:

Σ = diag ([σ1, σ2, σ3, ..., σL])

where σ1 ≥ σ2 ≥ σ3 ≥ ... ≥ σL . (12)

In the presence of a perfectly diffuse sound field, we have shown
that Cb(m) is proportional to the identity matrix, therefore its eigen-
values are equal. On the other hand, in the presence of a perfectly
directive sound field, only σ1 is non zero. Hence, the more diffuse the
sound field, the more homogeneous the eigenvalues σl. We therefore
estimate β(m) as:

β(m) = 1− γ

γ0
, (13)

where γ is the deviation of the eigenvalues σl from their mean, i.e.:

γ =
1

〈σ〉

L∑
l=1

|σl − 〈σ〉| , where 〈σ〉 =
1

L

L∑
l=1

σl , (14)

and γ0 is the value of γ in the most directive case (in the presence of
a single plane wave), given by:

γ0 = 2 (L− 1) . (15)

Note that, when the sound field is perfectly diffuse, γ = 0 and thus
β(m) = 1. On the other hand, when the sound field is perfectly
directive, γ = γ0 and thus β(m) = 0.

2.1.3. Extraction of the directive signals

In the REVERB challenge scenario, we can assume that the largest
eigenvalue, σ1, corresponds to the target signal, while the other eigen-
values correspond to the reverberation. Therefore, in order to extract
the directive component of the sound field, we project the singular-
beam signals on the subspace defined by the first eigenvector, v1,
of the matrix Cb. Further, we apply a gain which depends on the
diffusivity. The estimated directive signals are then given by:

b(dir)(m) =
(
1− β 4(m)

)
v1v

H
1 b(m) . (16)

The idea here is that, in the case where β(m) is close to 1, the
extracted signals mostly consist of undesirable reverberant noise. The
term 1 − β 4(m) is then close to 0 and thus prevents noise from
polluting the directive signals.
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2.2. Sparse Recovery Method

In the second step of our dereverberation method, we employ sparse
recovery to beamform the directive signals in the direction of the
target.

2.2.1. Sparse plane-wave decomposition

We first decompose the directive signals in terms of theQ plane-wave
directions by solving the problem:

b(m) = ΦH s(m) . (17)

As there are many more directions than observed signals (Q� L),
this is an underdetermined system of equations and thus it has an
infinite number of solutions. In order to solve this problem, we make
the assumption that the directive signals b(m) can be explained by a
small number of plane-wave directions. We thus solve Problem (17)
for the sparsest vector of plane-wave signals.

There is a single stationary speaker in the room in the REVERB
challenge scenario, therefore the solutions to Problem (17) share the
same sparsity pattern over a short time interval. This allows us to
solve the following sparse recovery problem:

minimize ‖S(m)‖p,2
subject to B(dir)(m) = ΦH S(m) , (18)

where B(m) is a L× T matrix containing the T consecutive STFT
samples of the microphone signals:

B(m) = [b(dir)(m),b(dir)(m− 1), . . . ,b(dir)(m− T + 1)] ,
(19)

S(m) is the Q× T matrix of the plane-wave source signals:

S(m) = [s(m), s(m− 1), . . . , s(m− T + 1)] ,

and ‖.‖p,2 denotes the lp,2-norm and is defined as:

‖S(m)‖p,2 =

 Q∑
q=1


√√√√T−1∑

t=0

sq(m− t)2

p1/p

. (20)

The lp,2-norm promotes sparsity along the plane-wave dimension
when p ≤ 1. In this work we use p = 0.7.

We use the IRLS algorithm [16] to solve (18). The IRLS algo-
rithm iterates the following two steps until convergence:

1. ωq =

(
T−1∑
t=0

sq(m− t)2 + µ

) p−2
2

,

2. Ω = diag ([ω1, ω2, . . . , ωQ])) ,

S(m) = ΩΦ
(
ΦHΩΦ + λI

)−1

B(dir)(m) , (21)

where λ is a regularization factor and µ is a small-valued parameter
that is incorporated into the weights, ωi, to ensure that Ω is defined
when si = 0 [17]. Once the solver has converged, we obtain the
unmixing matrix, D(m), which decomposes the directive signals into
Q plane-wave components:

D(m) = Ω0Φ
(
ΦHΩ0Φ + λI

)−1

, (22)

where Ω0 is the diagonal matrix of the weights obtained after conver-
gence.

Fig. 1. This figure shows the spatial window with different κ in the
case where θ0 = 0.

2.2.2. Source Direction Estimation

In order to estimate the target source direction we first calculate the
energy corresponding to every plane-wave direction. Note that, at
this stage, the result of the sparse plane-wave decomposition could
be used. Instead, we arbitrarily chose to estimate the energy of the
plane-wave signals directly from the directive singular-beam signals.
The energy, eq(m, f), corresponding to direction θq , is given by:

eq(m, f) =
∣∣∣Φ?q(f) b(dir)(m, f)

∣∣∣2 , (23)

where (.)? denotes the conjugate and Φq is the q-th column of the
matrix ΦH. We then estimate the vector of the target source cartesian
coordinates, v0 = [x0, y0]T, as the energy-weighted average plane-
wave direction, i.e.:

v0 =

fhigh∑
f=flow

e(m, f) v , (24)

where:

v =[v1, . . . , vq, . . . , vQ]T ,

vq =[cos(θq), sin(θq)]
T ,

e(m, f) =[e1(m, f), . . . , eq(m, f), . . . , eQ(m, f)] ,

and flow and fhigh denote the lower and upper cutoff frequency indices,
respectively.

Lastly, we estimate the target source direction, θ0(m), as:

θ0(m) = (1− αθ) θ0(m− 1) + αθ arctan(y0/x0) , (25)

where αθ is the forgetting factor for the estimation of the target
direction.

2.2.3. Beamforming

In order to further isolate the target signal, we steer a beam towards
the target direction. The beamforming weights, d(m), for the mth

time window is given by:

d(m) = (1− αd)d(m− 1) + αd wT D(m), (26)
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Table 1. Parameters used in the speech enhancement task.

Common Sampling rate=16 kHz
Window=hanning

Frame length=128 points (8 ms)
Frame shift=frame length / 2

Q = 180, L=8
Sparse Recovery Number of iterations = 10

p = 0.7, αd = 0.2, T = 4

µ = maxi(
∑T−1
l=0

si(m+l,f)2

Q
)

λ = r
1−r 〈diag

(
ΦHΩΦ

)
〉

r = β0.15(m)
Spatial window κ = 50
Source direction flow = 500 Hz, fhigh = 3500 Hz

estimation αθ = 0.2
Correlation matrix (C) αC = 0.01

where w is a spatial window, the maximum of which is located in
the target source direction. We calculate the weights of the spatial
window as the von Mises distribution with parameter κ:

w =[eκ[cos(θ1−θ0)−1], eκ[cos(θ2−θ0)−1], ..., eκ[cos(θQ−θ0)−1]]T .
(27)

Figure 1 shows the spatial windows for different κ values. Lastly, the
target signal, s0(m, f) is estimated as:

s0(m) = d(m) b(dir)(m) . (28)

The inverse STFT is then applied to s0(m) to recover the time-domain
estimated source signal.

3. SIMULATION

The REVERB challenge consists of two tasks: one for speech en-
hancement (SE) and the other for automatic speech recognition (ASR).
For the SE task, 1ch, 2ch, and/or 8ch speech enhancement algorithms
can be used. We addressed the speech enhancement (SE) task with 8
channels. The challenge dataset consists of real recordings (RealData)
and simulated data (SimData). SimData contains a set of reverberant
speech signals simulated by convolving clean speech signals with
measured room impulse responses (RIRs) and subsequently adding
measured noise signals. It simulates 6 different reverberation con-
ditions: 3 rooms with different volumes (small, medium and large
size), 2 types of distances between a speaker and a microphone array
(near=50cm and far=200cm). RealData contains a set of real record-
ings made in a reverberant meeting room which is different from
the ones used for SimData. It contains 2 reverberation conditions: 1
room, 2 types of distances between a speaker and a microphone array
(near= 100cm and far= 250cm)[18].

For each test utterance, the following quality measures were
calculated (please refer to [19] for more details):

• Cepstrum distance (CD)

• Log likelihood ratio (LLR)

• Frequency-weighted segmental SNR (FWSegSNR)

• Speech-to-reverberation modulation energy ratio (SRMR)

• Perceptual Evaluation of Speech Quality (PESQ).

Note that the CD, LLR, FWSeqSNR and PESQ require a reference
signal, which is available only in the case of the simulated set of
data. Therefore, the performance of the algorithm in the case of the
measured dataset (RealData) was evaluated using the SRMR only.
Smaller values of CD and LLR and larger values of FWSeqSNR,
SRMR, and PESQ are assumed to indicate better speech quality.

The parameters used in our algorithm are summarized in Table 1.
The parameter values were adjusted by applying the method on the
development set data and listening to the result. In particular, the
parameter r was set to β0.15(m) with the objective of removing as
much reverberation as possible. In other words, this setting leads to a
rather aggressive processing which may affect the quality of speech,
as perceived by a human listener. Note that the rather complicated
definition of the regularization parameter, λ, arises from the normal-
isation of this parameter with regard to the energy of the directive
signals. This aspect will be explained in detail in a forthcoming
publication.

Table 2 compares the values of the various speech quality mea-
sures obtained with: 1) the signals enhanced using the method pre-
sented in this paper (enh) ; and 2) the original reverberant signals
(org). The values presented in the table correspond to the quality
scores averaged over every utterance for each test condition of the
challenge. In the case of the simulated data, the proposed method
improved the speech quality in terms of the CD, FW-SeqSNR and
PESQ. However, it degraded the LLR and did not improve the SRMR
significantly. In the case of the measured data, the SRMR scores of
the enhanced signals are significantly higher than that of the original
signals, which indicates that the reverberation was greatly reduced.

4. CONCLUSION

In this paper, we propose a dereverberation algorithm which consists
of two steps. First the microphone signals are processed such that
only the directive component of the sound field remains. Second, the
directive signals are decomposed in plane-wave components using
sparse-recovery. The plane-wave signals are then beamformed in
the target source direction. Experiments were carried out on the
evaluation dataset of the challenge. The proposed algorithm enhanced
the signals in terms of the CD, FW-SeqSNR and PESQ.
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