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ABSTRACT

This paper presents an algorithm for reverberant speech
enhancement based on single channel blind spectral subtrac-
tion. This algorithm deals with the late components of the
reverberation effect and it was optimized using 18 speech sig-
nals from the NBP database. Experimental results show that
the proposed algorithm is well suited for speech enhancement
in teleconference and telepresence environments and it can
increase the perceptual quality by up to 31% and 62% of re-
verberant and noisy speech signals from databases with sim-
ulated and real reverberation and noise effects, respectively.

1. INTRODUCTION

Reverberation can strongly affect the performance of state-
of-the-art systems of speech/speaker recognition and hearing-
aid, motivating the use of speech enhancement techniques.
Although reverberation degrades speech intelligibility and
perceptual quality, in a small amount it makes speech more
pleasant to common listeners [1]. The use of a microphone
array is commonly associated to dereverberation techniques,
but for the applications previously mentioned the use of one
microphone approach is more indicated.

This paper describes the algorithm proposed in [2] for the
enhancement of reverberant speech signals based on spectral
subtraction. This algorithm is a modification of the two-stage
algorithm for one-microphone reverberant speech enhance-
ment [3] and it was fine tuned using the 18 signals from the
NBP database [4]. The algorithm was tested in two databases
composed by signals from the WSJCAM0 corpus [5] and
MC-WSJ-AV corpus [6].

This paper is organized as follows: In Section 2, the spec-
tral subtraction dereverberation algorithm is explained in de-
tails. Section 3 describes the training and test databases em-
ployed in this work. Section 4 briefly describes the REVERB
Challenge 2014 [7] and its suggested quality assessment met-
rics. Section 5 shows the results of the training experiments
used in the parameter optimizations and also the test experi-
ments analyzing in details the results achieved with the opti-
mized parameters. Finally, a conclusion concerning the per-

formance increase is included in Section 6.

2. SPECTRAL SUBTRACTION ALGORITHM

The spectral subtraction algorithm [2] is based only on the
spectral subtraction stage of the two-stage algorithm [3] and
it aims to reduce the effect of long term reverberation compo-
nents of reverberant speech signals. In this paper the reverber-
ant signal is modeled as the convolution of the room impulse
response (RIR) h(n) and the anechoic (clean) speech signal
s(n),

z(n) =
N∑
l=0

h(l)s(n− l). (1)

The Figure 1 shows the components of the spectral sub-
traction block, under the assumption that the early reflections
and late reverberation components of the RIR are approxi-
mately uncorrelated [3].
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Fig. 1. Diagram of the spectral subtraction algorithm.

Let Sz(k,m) = |Sz(k,m)|ejϕz(k,m) be the FFT of the
m-th frame of the windowed version of z(n), where a 32 ms
hamming window of 24 ms overlap is used. Also let ρ be the
length of the early reflection in frames, commonly considered
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around 50 ms, γ be the scaling factor that establishes the rel-
ative strength of the late impulse components and w(m) be
an asymmetrical smoothing window based on the Rayleigh
distribution, given by w(m) =

(
m+a
a2

)
e

(
−(m+a)2

2a2

)
, if m > −a

w(m) = 0, otherwise
, (2)

where a controls the overall spread of the function and it has
to be smaller than ρ in order to provide a reasonable match to
the shape of the equalized impulse response.

The model of the power spectrum of the late reverbera-
tion, in order to perform the spectral subtraction, can be de-
scribed as

|Sl(k,m)|2 =
∞∑

τ=−∞
γw(τ − ρ)|Sz(k,m− τ)|2, (3)

where k is the frequency bin and m refers to the time frame.
Considering that the early and late components are mu-

tually uncorrelated, the power spectrum of the early impulse
components can be estimated by subtracting the power spec-
trum of the late impulse components from the reverberant
speech. The spectrum subtraction scheme performs a weight-
ing in the power spectrum of z(n), where the block SUB-
TRACTION is given by

G(k,m) = max

[
1− |Sl(k,m)|2
|Sz(k,m)|2 , ε

]
, (4)

and finally the magnitude spectrum of x(n) is

|Sx(k,m)| =
√
|Sz(k,m)|2 ×G(k,m). (5)

In order to calculate x(n) the phase ϕz(k,m) of Sz(k,m)
is combined to the magnitude |Sx(k,m)|, so

Sx(k,m) = |Sx(k,m)|ejϕz(k,m) (6)

In order to asses the perceptual quality of a reverberant
speech signal, this work uses the quality measure known as
QAreverb [4], which is given by

Q = −σ
2T60
Rγ

, (7)

where σ2 is the room spectral variance defined in [8], T60 is
the reverberation time defined as the period of time required
for the sound-pressure to decay 60 dB, in this work estimated
by Karjalainen’s algorithm [9], R is the direct-to-reverberant
energy ratio defined in [10], with γ = 0.3. In practice, a
higher T60 indicates a more lasting reverberation effect. σ2,
T60 and R are obtained directly from the RIR, h(n), which is
estimated from the deconvolution process between the clean
and the reverberant speech signals.

The Q score is mapped to the QMOS score, which uses
the MOS (mean opinion score) scale, through a third order
followed by a first order polynomial functions.

The parameters scaling factor γ, attenuation limit ε, length
of the early reflections ρ and spread control a were selected
through an exhaustive search using the QMOS score as the
measure to be optimized.

3. TRAINING AND TEST DATABASES

The database used to fine tune the selection for the algo-
rithm’s parameters is called New Brazilian Portuguese (NBP)
database [4] and it was developed using 3 types of reverbera-
tion effect: artificial, natural and real. The 4 anechoic speech
signals, 2 for male and 2 for female, were used to generate 24
degraded speech signals with artificial reverberation, 68 with
real reverberation and 108 with natural reverberation effects,
making a total of 204 speech signals (200 reverberant speech
signals plus the 4 anechoic speech signals), all of them sam-
pled at Fs = 48 kHz. The speech signals were assessed by
an absolute category rate (ACR) MOS test with 30 listeners.
The reverberation effect was imposed onto these 4 anechoic
signals using three distinct reverberation effects, namely:

• Artificial reverberation: It is represented by 6 distinct
artificially generated RIRs with source-microphone
distance of 180 cm, where the early reflections were
modeled via the image method, and the late reverber-
ation used the feedback delay network method and
a modified version of Gardner’s method, for emulat-
ing the lower and higher reverberation times, respec-
tively. The average measured reverberation time were
{196, 292, 387, 469, 574, 664} ms.

• Natural reverberation: This approach consists in RIRs
obtained from the direct recordings of 4 different
types of rooms with several source-microphone dis-
tances for each room, as detailed in [11], making a
total of different 17 RIRs. The average measured re-
verberation time for the 4 rooms are in the range of
{120, 230, 430, 780} ms. The source-microphone dis-
tances range from 50 cm to 1020 cm.

• Real reverberation: It is the only case where the de-
graded signals were directly played/recorded in the
rooms, without using the convolution operation be-
tween the RIRs and the anechoic speech signals. The 7
rooms used in the recordings presented different room
dimensions and employed at least 3 different source-
microphone distances emulating a total of 27 RIRs
with average measured reverberation time in the range
of {140, 390, 570, 650, 700, 890, 920} ms. The source-
microphone distances range from 50 cm to 400 cm.

The training database is composed of 18 reverberant
speech signals, one for each environment (anechoic, 6 ar-
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tificial RIRs, 4 natural rooms, 6 real rooms). The overall
best performance was QMOS = 3.78 for {γ = 0.35, ε =
10−3, ρ = 7, a = 6}, against QMOS = 3.46 for the unpro-
cessed training database.

The test database was suggested by the REVERB Chal-
lenge described in Section 4 and it is divided in development
database and evaluation database, each of these databases is
also divided in two datasets:

• SimData: speech signals from the WSJCAM0 database [5]
convolved with RIRs measured in three different rooms
with two different source-microphone distances and
background noise was added to each signal at fixed
signal-to-noise ratio (SNR). The reverberation time
for these rooms are about {250, 500, 700} ms and the
source-microphone distances are {50, 200} cm.

• RealData: speech signals recorded in a reverberant and
noisy room from the MC-WSJ-AV database [6] with
two different source-microphone distances. The rever-
beration time for this rooms is about 700 ms and the
source-microphone distance are {50, 250} cm.

The development database is composed by 1484 signals
from SimData and 179 signals from RealData. The evaluation
database is composed by 2176 from SimData and 372 from
RealData.

4. REVERB CHALLENGE 2014

The REVERB (REverberant Voice Enhancement and Recog-
nition Benchmark) Challenge 2014 [7] consists of two parts:
speech enhancement task and automatic speech recognition
task. The speech enhancement task, which is the task in which
the algorithm described in this paper is participating, consists
of mitigating the effects of noise and reverberation of speech
signals from the development and evaluation databases de-
scribed in Section 3. The performance of the algorithms par-
ticipating in the speech enhancement task is assessed by four
mandatory and three optional measures. The mandatory are:

• Cepstral distance (CD) [12]: measures the discrepancy
between degraded and clean signals. Can only be mea-
sured in SimData as it needs the clean signal.

• Log-likelihood ratio (LLR) [12]: is a measure of the
discrepancy between degraded and clean signals. Can
only be measured in SimData as it needs the clean sig-
nal.

• Frequency-weighted segmental SNR (FWSS) [12]:
measures the discrepancy between degraded and clean
signals. Can only be measured in SimData as it needs
the clean signal.

• Speech-to-reverberation modulation energy ratio (SRMR)
[13]: measures the perceptual quality of a speech signal

degraded by noise and reverberation. Can be used for
both SimData and RealData quality assessment.

The optional are:

• Computational cost: measures the how long (in sec-
onds) the algorithm (ATime) took to process a given
dataset. As this is strongly dependent on the plat-
form configuration, the computational cost (RTime)
of the given reference code is also computed for each
dataset. The algorithms were used in MATLAB Ver-
sion 7.12.0.635 (R2011a) 64-bit in a computing en-
vironment with Windows 7 64-bit operating system,
AMD Vision Dual Core E-350 1.60 GHz processor and
4 GB RAM.

• Word error rate (WER) [14]: common metric to mea-
sure performance of speech recognition systems. WER
is measured after the dataset is processed by the speech
enhancement algorithm and the reference algorithm for
automatic speech recognition (which uses HTK [15])
given by the REVERB Challenge. The automatic
speech recognition algorithm was used in a linux
ubuntu 12.04 virtual machine in a MAC OS-X 10.8
64-bits, with a 2.3 GHz intel quadcore i7 processor and
8GB RAM.

• Perceptual Evaluation of Speech Quality (PESQ) [16]:
ITU-T standard for evaluate the perceptual quality of
speech coders. As the publishing of PESQ results de-
mands the purchase of a license, the authors of this pa-
per did not used it in the REVERB Challenge.

5. EXPERIMENTAL RESULTS

Tables 1 to 6 show the results for quality assessment metrics
cepstral distance (CD), log-likelihood ratio (LLR), Frequency-
weighted segmental SNR (FWSS), Speech-to-reverberation
modulation energy ratio (SRMR), QMOS (a blind version
of QMOS was used in RealData), Word Error Rate (WER)
and computational cost (ATime and RTime) for each subset
of the development and evaluation databases. It can be ob-
served that all averages of the quality assessment measures
for the processed databases are greater then its unprocessed
counterpart. Some partial results give the false impression
of a worse performance for the processed compared to the
unprocessed databases (WER is not the case), but it can be
stated that the difference between the values are lesser then
the expected estimation error. The results for SimData Room
1 show a worse performance for the automatic speech recog-
nition algorithm for the processed speech signals because the
perceptual quality of the signals were already high, i.e., the
MOS [17] estimated by QMOS was around 4, which means it
is labeled as GOOD.

Regarding the development database the objective metrics
CD, LLR and FWSS plus the perceptual metrics SRMR and
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Table 1. Quality measures results using single channel data
full batch for unprocessed development SimData dataset.

Measure Room 1 Room 2 Room 3 Avg.
Near Far Near Far Near Far -

CD 1.96 2.65 4.58 5.08 4.2 4.82 3.88
LLR 0.34 0.38 0.51 0.77 0.65 0.85 0.58

FWSS 8.1 6.75 3.07 0.53 2.32 0.14 3.49
SRMR 4.37 4.63 3.67 2.94 3.66 2.76 3.67
QMOS 4.23 3.87 3.35 1.52 3.27 2.35 3.10

WER (%) 15.3 25.3 43.9 85.8 52.0 88.9 51.8

Table 2. Quality measures results using single channel data
full batch for processed development SimData dataset.

Measure Room 1 Room 2 Room 3 Avg.
Near Far Near Far Near Far -

CD 3.46 3.46 4.64 4.78 4.27 4.44 4.17
LLR 0.51 0.52 0.51 0.69 0.64 0.77 0.61

FWSS 8.07 7.56 5.39 2.55 4.19 1.96 4.96
SRMR 5.06 5.68 4.71 4.32 4.74 4.13 4.77
QMOS 4.21 3.96 3.81 2.42 3.69 2.85 3.49

WER (%) 36.5 46.0 34.6 63.2 45.3 64.5 48.3
ATime 1167 1200 1185 1667 1067 1206 1249
RTime 181 164 189 199 181 192 184

QMOS and WER presented an improvement of 7%, 5%, 42%,
30%, 13% and 3.5%, for SimData and SRMR and QMOS

increased by 62% and 51% and WER decreased by 22.5%,
for RealData. Regarding the evaluation database the objec-
tive metrics CD, LLR and FWSS plus the perceptual metrics
SRMR and QMOS and WER presented an improvement of
6%, 2%, 43%, 31%, 15% and 0.9%, for SimData and SRMR
and QMOS increased by 60% and 50% and WER decreased
by 14.6%, for RealData.

It is important to note that the training database used
to fine tune the algorithm parameters belongs to a differ-
ent corpus than both development and evaluation databases
(these two databases have signals from the same corpus). In
spite of that, the three databases (training, development and
evaluation) share common reverberation times and source-
microphone distances, what explains the performance of the
algorithm proposed in [2] and shows that the algorithm is
well suited for being used for speech enhancement in tele-
conference and telepresence environments.

6. CONCLUSION

This work analyzes the performance of the algorithm for sin-
gle channel speech enhancement proposed in [2] with respect
to perceptual quality metrics for reverberant and noisy speech
signals.

The algorithm is based in spectral subtraction and four of

Table 3. Quality measures results using single channel data
full batch for development RealData dataset.

Measure Unprocessed dataset Processed dataset
Near Far Avg. Near Far Avg.

SRMR 4.06 3.52 3.79 6.51 5.74 6.13
QMOS 2.45 2.41 2.43 3.72 3.64 3.68

WER (%) 88.7 88.3 88.5 69.0 62.9 66.0
ATime - - - 340 329 335
RTime - - - 56 53 55

Table 4. Quality measures results using single channel data
full batch for unprocessed evaluation SimData dataset.

Measure Room 1 Room 2 Room 3 Avg.
Near Far Near Far Near Far -

CD 1.99 2.67 4.63 5.21 4.38 4.96 3.97
LLR 0.35 0.38 0.49 0.75 0.65 0.84 0.58

FWSS 8.12 6.68 3.35 1.04 2.27 0.24 3.62
SRMR 4.5 4.58 3.74 2.97 3.57 2.73 3.68
QMOS 4.24 3.96 3.61 2.37 3.2 2.4 3.30

WER (%) 18.1 25.4 43.0 82.2 53.5 88.0 51.7

Table 5. Quality measures results using single channel data
full batch for processed evaluation SimData dataset.

Measure Room 1 Room 2 Room 3 Avg.
Near Far Near Far Near Far -

CD 3.49 3.53 4.62 4.86 4.29 4.55 4.22
LLR 0.53 0.53 0.48 0.65 0.62 0.74 0.59

FWSS 7.97 7.65 5.85 3.14 4.3 2.03 5.16
SRMR 5.21 5.55 4.9 4.35 4.8 4.1 4.82
QMOS 4.22 4.02 3.99 2.87 3.73 3.88 3.79

WER (%) 47.5 52.5 38.4 57.1 43.4 66.2 50.8
ATime 1661 2028 1754 1834 1760 1709 1791
RTime 331 247 290 328 278 307 297

Table 6. Quality measure results using single channel data
full batch for evaluation RealData dataset.

Measure Unprocessed dataset Processed dataset
Near Far Avg. Near Far Avg.

SRMR 3.17 3.19 3.18 5.08 5.12 5.10
QMOS 2.51 2.57 2.54 3.79 3.8 3.80

WER (%) 89.7 87.3 88.5 76.3 71.5 73.9
ATime - - - 736 622 679
RTime - - - 138 126 132
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its parameters (scaling factor γ, attenuation limit ε, frame size
of the early reflection ρ and spreading factor a of the Rayleigh
distribution) were fine tuned using a 18 reverberant speech
signals from the NBP database [4]. The development and
evaluation databases used in the REVERB Challenge 2014
were not used to train the algorithm in any way, both being
used as test databases.

The metrics suggested by the REVERB Challenge 2014
(CD, LLR, FWSS and SRMR) plus the QMOS metric show
that the algorithm proposed in [2] is well suited for speech en-
hancement for teleconference and telepresence environments.
Regarding the evaliation database, the algorithm increases the
estimated metrics for quality assessment CD, LLR, FWSS,
SRMR and QMOS by 6%, 2%, 43%, 31% and 15% and de-
creases WER by 0.9%, for SimData and SRMR and QMOS is
increased by 60% and 50% and WER is decreased by 14.6%,
for RealData.
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