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ABSTRACT

In this paper we propose a multichannel feature compensa-
tion approach for automatic speech recognition in reverberant
and noisy environments. The proposed technique propagates
the posterior of the clean signal estimated by a multichannel
Wiener filter in short-time Fourier transform (STFT) domain
into Mel-frequency cepstrum coefficients (MFCC) domain.
The multichannel Wiener filter reduces both reverberation and
additive noise. Furthermore, we approximate the propagation
of the prior distributions of speech and interference through
the inverse STFT and the STFT with different time-frequency
resolutions. This allows us to derive a multichannel minimum
mean square error MFCC estimator with an STFT resolution
that is different from the resolution in the speech enhancement
stage. The proposed approach is able to outperform a multi-
channel short-time spectral amplitude estimation approach on
both the clean training and multi-condition training ASR tasks
of the REVERB challenge.

Index Terms— Multichannel, dereverberation, automatic
speech recognition, MMSE-STSA, MMSE-MFCC, observa-
tion uncertainty

1. INTRODUCTION

The application of automatic speech recognition (ASR) sys-
tems to challenging tasks has increased considerably in the
last few years. One such task is the recognition of so-called
distant speech in reverberant and noisy environments, for
example required for hands-free home automation services.
Unlike close-talking scenarios, where static adaptation using
in-domain data already mitigates robustness problems, such
a task can greatly benefit from multiple microphones. This
turns ASR in such environments into a multi-disciplinary
task, where the expertise of the speech enhancement (SE) and
ASR fields have to be joined.
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In this paper, we propose a robust ASR system for the RE-
VERB challenge task which attains a tight integration of the
SE and ASR stages by propagating the uncertainty associated
to a minimum mean square error (MMSE) estimate. At the
SE stage, the posterior distribution associated with the signal
obtained using the multichannel MMSE (M-MMSE) estima-
tor proposed in [1] is calculated. A multichannel MMSE
short-time spectral amplitude (M-MMSE-SA) estimator is
also used for an improved estimation of the parameters. The
obtained posterior is then propagated through intermediate
inverse short-time Fourier transform (ISTFT) and short-time
Fourier transform (STFT) transformation to compute the pos-
terior distribution in the domain of the ASR stage. Finally,
this posterior is propagated into Mel-frequency cepstral co-
efficients (MFCC) domain to attain an M-MMSE estimate of
the MFCC.

The proposed approach to integrate the SE and ASR
stages improves upon previous approaches that make use
of MMSE-MFCC estimators [2—4] and other similar inte-
gration approaches such as the one proposed in [5] in two
ways. Firstly, it propagates the posterior associated with an
M-MMSE estimate rather than a single-channel MMSE esti-
mate. Secondly, it makes use of an approximation that allows
the use of different time-frequency resolutions of the STFT
in the SE and ASR stages.

The resulting multichannel MMSE Mel-frequency cep-
stral coefficients (M-MMSE-MFCC) estimator is able to ex-
ploit expertise in STFT domain SE while allowing both fea-
ture and model compensation in MFCC domain. Changes to
the ASR architecture include only propagation through the
feature extraction and model based enhancement, which re-
sults in a small increase in computational complexity. Results
on the REVERB task show that by tightly integrating the SE
and ASR systems, it is possible to improve upon a baseline
ASR system that uses only the M-MMSE-SA estimator based
on the system proposed in [1].

2. JOINT REVERBERATION AND NOISE
REDUCTION BY INFORMED SPATIAL FILTERING

In this section, a method is presented to estimate the clean
speech signal that is distorted by reverberation and additive



noise. The method is derived using a parametric sound field
model presented in [6]. In contrast to the method presented
in [7], it does not require an estimate of the reverberation time.

2.1. Acoustic Signal Model

We consider an array of M microphones capturing the sound
field pressure. In the STFT domain, the microphone signals
are written into vectors of length M so that

y(kJL) = [Yl(kvn)w“aYM(kvn)}Tv (1)

where k denotes the frequency inde, n the time frame index
and Y;,,(k, n) is the observed signal at the m-th microphone.
We employ a simple signal model with a single desired sound
source in a reverberant room and additive stationary noise
such as microphone self noise and ambient noise. The rever-
berant sound is modeled by a single plane-wave and a homo-
geneous and isotropic diffuse sound field. The microphone
signals can be described by

y(k,n) =d(k,n)S(k,n) +r(k,n) +v(k,n), (2)

where S(k,n) denotes the direct sound of the desired sig-
nal as received by a reference microphone, d(k,n) is the
complex-valued relative propagation vector of the direct
sound from the reference microphone to all microphones.
The signal vector r(k,n) is the diffuse sound and v(k,n) is
the additive stationary noise.

We assume all components to be mutually uncorrelated
such that the power spectral density (PSD) matrix of the mi-
crophone signals can be expressed as

&y (k,n) = ds(k,n)d(k,n)d" (k,n)
+ ¢r(k,n) Lairr(k) + By (k,n),  (3)

where ¢g(k,n) is the PSD of the desired speech signal at
the reference microphone, ¢r(k,n) is the PSD of the dif-
fuse sound, I'ger(k) denotes the spatial coherence matrix of
a purely diffuse sound field that is defined mainly by the ar-
ray geometry, and ® (k, n) is the noise PSD matrix. Our ob-
jective is to obtain the estimate S (k,n) of the desired signal
S(k,n) by applying the filter weights h(k,n) to the micro-
phone signals, i.e.

S(k,n) = hH(k,n)y(k‘, n). )

In the following section, two such spatial filters are derived.

2.2. Derivation of the Spatial Filter

A well known filter minimizing the mean square error (MSE)
between the complex Fourier coefficients of the desired and
estimated signal for the given signal model (2) is proposed
in[1],1.e.

hyvanse(k n) = arg min B {|S(k, n) — S(k, n)|2} . 5

where F {-} denotes the expectation operator. This yields the
M-MMSE estimator, also known as the multichannel Wiener
filter (MWF). The filter can be decomposed into a mini-
mum variance distortionless response (MVDR) beamformer
hyvvpr(k,n) and a Wiener filter Hymse(k,n) that reduces
the residual interference ¢ (k, n) at the output of the MVDR
beamformer. The filter is given by

(¢r Tairr + ®y)~'d o5
hy k,n) = . , (6
manase(k,m) df (prTaits + ®v)~'d @5+ du ©
——
hyvvor (k,n) Humse (k,n)
where the residual interference of the MVDR is
U(k’ Tl) = h]\ﬁVDRU% ’I’L) [I‘(/{, TI,) + V(k7 ’I’L)} ) (7)

and its PSD can be obtained by
¢ (k,n) = hifypr (6r Tair + ) hyvor- (®)

The time and frequency indices are omitted in (6) and (8) for
the sake of brevity.

Rather than estimating the clean speech spectral coeffi-
cient in the MSE sense as in (5), we can also estimate the
short-time spectral amplitude (STSA) of the clean speech in
the MSE sense. For a single microphone, the resulting STSA
estimator was proposed in [8]. By decomposing the desired
signal component

S(k,n) = A(k,n) exp (ja(k,n)), ©)

into its magnitude A(k,n) and phase «(k,n), we obtain the
M-MMSE-SA estimator as

A(k,n) = E{A(k,n)ly(k,n)} . (10)

In a similar manner as the M-MMSE filter, the M-MMSE-SA
filter can be decomposed into an MVDR beamformer and an
STSA filter reducing the residual interference U (k,n), i.e.

hyisa(k,n) = havor(k, n) - Hsa(k, n), (11)

where Hgsa (k,n) can be found in, for example, [9, 10]. Note
that (11) has the same structure as (6), where the Wiener filter
Hymsg(k, n) is replaced here by the STSA filter Hgsa (k,n).

The complex filter coefficients hy sa (k, n) are applied to
the complex signal y(k,n). This yields an optimal estimate
of the spectral amplitude A(k,n) while the phase spectrum is
equal to the phase spectrum of the signal at the output of the
MVDR beamformer.

The filter hyypr(k,n), inherent in both the M-MMSE
and M-MMSE-SA filters, depends on the propagation vector
d(k,n) that is determined by the direction-of-arrival (DOA)
of the desired source, and on the diffuse plus noise PSD ma-
trix ¢ g(k, n) Laire (k) + P+ (k, n). These three parameters can
be time varying and therefore have to be estimated for each
time and frequency instant.



2.3. Parameter Estimation

The data in the REVERB challenge was obtained using uni-
form circular arrays. In the current implementation, we used
beamspace root-MUSIC [11] to estimate the narrowband
DOAs. The estimation of the diffuse sound PSD is a criti-
cal task for the dereverberation performance and the quality
of the output signal of the SE stage as well as the feature
compensation. For the estimation of the diffuse sound PSD,
we used the maximum likelihood estimator utilizing multiple
reference signals as proposed in [1]. The noise PSD matrix
is estimated with the speech presence probability-based es-
timator proposed in [12] that updates the noise PSD matrix
mainly during speech pauses.

As the used estimators are able to track changes in the
sound scene rather quickly, the resulting filter is highly time
varying. This results in a fast adaption and superior interfer-
ence reduction performance compared to signal-independent
spatial filters.

3. MODEL-BASED FEATURE COMPENSATION

This section presents a method for integration of the SE and
ASR stages by using uncertainty propagation. It also details
the configuration of the final system used for the REVERB
challenge.

3.1. Integration through Propagation of Uncertainty

When using STFT domain SE techniques to attain robust
ASR, the straightforward approach is to treat the SE and
ASR stages independently, as shown in Fig. 1. The SE stage
delivers a time domain estimate of the direct signal that is
passed to the feature extraction process of the ASR stage, in
this case the computation of the MFCC. One way to better
integrate the SE and ASR stages is to calculate the MMSE
estimates in the MFCC domain using the STFT domain sig-
nal model (2). This can be achieved by using MMSE-MFCC
estimators [2—4], instead of STFT domain estimators like the
M-MMSE-SA proposed in Section 2.

Minimizing the MSE directly in the ASR domain yields
more accurate estimates. Furthermore, when the MSE in fea-
ture domain is available, as in [4], ASR model compensa-
tion can be used to further improve the ASR performance.
MMSE-MFCC estimators can be seen as a particular case of
uncertainty propagation of the posterior distribution associ-
ated with the MMSE estimate of the desired signal in the
STFT domain, which is also known as a Wiener filter [4].
The same approach can be therefore applied to other fea-
ture extractions for which propagation formulas exist such as
RASTA-LPCCs or MLP-based features.

Under the uncertainty propagation principle, it is only
necessary to derive the posterior distribution of the Wiener
filter for a given STFT domain speech enhancement approach.
The appropriate formulas for propagation and decoding can
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Fig. 1. Robust ASR system with decoupled SE and ASR
stages. The estimated time-domain speech signal is passed
from one stage to the other. Note that the MFCC acts directly
on the provided STFT coefficients.

be then applied to obtain the compensated features and op-
tionally perform model compensation for a given ASR sys-
tem. This is however not straightforward in complex speech
processing schemes like the one used in the proposed system.
In the following, we develop solutions to apply uncertainty
propagation to the multichannel dereverberation and noise
reduction approach presented in Section 2.

3.2. Derivation of the Posterior associated with the Mul-
tichannel MMSE Estimator

As a linear Bayesian estimator, the M-MMSE estimator has
also an associated posterior distribution with mean equal to
the estimated signal and variance equal to the minimum MSE
of the estimated signal, see e.g. [13, Sec. 10.6]. Despite hav-
ing dimension equal to the number of channels M, only a
single hidden variable, the clean Fourier coefficient S(k,n),
is estimated per time-frequency bin. The posterior associated
with the M-MMSE estimate can be thus defined for each time-
frequency bin as

p(S(k,n)|y(k,n)) ~ Nc (SM-MMSE(k7n), A(k,n)) . (12)
The mean of the posterior is equal to the M-MMSE estimate

Swimmse (k, 1) = it yse (k, n)y (k,n), (13)

where the M-MMSE filter is given by (6). The variance of the
posterior A(k, n) is equal to the minimum MSE, which for the



M-MMSE is given by [13, Egs. 10.28, 10.29]

AEk,n)=E {\S(k,n) — Swmmise (K, n)|2}

= ps(k,n) — hl\}/II-MMSE(h n)d(k)ps(k,n)
_ ¢S(k7n)¢U(k7n)
ds(k,n) + oy (k,n)

(14)

Following [4], any non-linear single-channel MMSE es-
timator can be seen as the result of propagating the single-
channel Wiener posterior through the corresponding non-
linearity. Given the analogy between the single- and mul-
tichannel MMSE linear estimators, it is clear that the same
procedure can be used to derive non-linear multichannel
MMSE estimators.

Therefore, the M-MMSE-SA estimator discussed in Sec-
tion 2 can be seen as a special case of propagation of the pos-
terior of the M-MMSE through the amplitude non-linearity.
Furthermore, by applying the propagation formulas in [4] to
this posterior, an M-MMSE-MFCC estimator can be derived.

3.3. Propagating through Different STFT Configurations

Although possible, deriving an M-MMSE-MFCC estimator
from the posterior of the M-MMSE requires the SE and ASR
stages to use the same STFT. This is often undesired as the
SE stages require larger processing frames or different frame
rates. In the conventional M-MMSE or M-MMSE-SA cases,
intermediate ISTFT+STFT separate SE and ASR stages, see
Fig. 1. This allows for different STFT configurations and also
helps to mitigate the artifacts created by the spatial and spec-
tral filtering. The direct use of a M-MMSE-MFCC estimate
derived from the M-MMSE in the REVERB test-set led to
poor results, which might be explained by this fact.

In this paper, we propose an approach that attains uncer-
tainty propagation through the intermediate ISTFT and STFT.
This makes it possible to use different STFT resolutions for
SE and ASR and to mitigate artifacts.

The idea behind the approach, here termed prior un-
certainty propagation (Prior-UP), is to transform the prior
distributions associated with the M-MMSE through the
ISTFT+STFT and derive the posterior at the ASR side.

The M-MMSE can be expressed as single-channel Wiener
filter acting on the output signal of the MVDR beamformer
that is given by

Z(k, n) = hﬁVDR(h n)y(k> n)
= S(k,n) + Uk, n). (15)
Consequently, the posterior of the M-MMSE estimate (12)

can be interpreted as arising from observing Z(k, n) with the
a priori clean speech distribution

p(S(k,n)) ~ Nc (0, 65(k,n)) , (16)

and the a priori distribution of the residual interference

p(U(k,n))

Since the ISTFT and STFT are both linear transforma-
tions, we can directly transform the priors and the observable
through them. The result is each Fourier coefficient in the
STFT domain of ASR of the beamformed signal along with
two new a priori distributions. From these new a priori distri-
butions and the observable, a new posterior can be derived.

One problem of this approach is that the propagation of
(16) and (17) through the ISTFT+STFT induces correlations
between the Fourier coefficients. To simplify computations,
these correlations are ignored to maintain the same distribu-
tions on the ASR side as on the SE side but with transformed
variances ¢s(k’,n’) and ¢y (k’,n’). It has to be taken into
account that similar correlations, for example those induced
by windowing operations, are already ignored in the conven-
tional speech enhancement model for additive noise [8].

The only remaining problem is to compute the trans-
formed a priori variances ¢g(k’,n’) and ¢y (k',n'). For
arbitrary STFT configurations the n’-th frame at the ASR
side is going to overlap with various frames at the SE side.
Consequently the frequency vector of variances ¢(n') can be
computed as

~ Nc (0, ¢u(k,n)) . (17)

d()= > |Ru_nld(n), (18)

neOv(n’)

where Ov(n') are the indices of the SE frames overlapping
with the n’-th ASR frame and | - |? denotes the element-wise
absolute square operation. The matrix R,,/_,, is built by mul-
tiplying the inverse Fourier and Fourier matrices truncated to
the corresponding overlap, which only depends on the time
frame shift n’ — n.

From the a priori variances ¢g(k',n’), ¢y (k',n) and the
MVDR beamformer output at the ASR side Z(k’, n’), we can
construct the posterior p(S(k,n')|y(k,n)) associated with
the corresponding Wiener filter as in [4].

3.4. Uncertainty Propagation and Modified Imputation

Once the a posteriori distribution of the clean STFT has been
obtained at the ASR side, it can be propagated through the
MFCC by applying the approach proposed in [4]. This ap-
proach only requires the assumption of log-normality for the
Mel-filterbank uncertain features and has a low computational
cost. The result of the propagation is a Gaussian posterior dis-
tribution in the MFCC domain

p(e(i,n')y(k,n)) ~ N (MMMSE(E n), A(i,n")) . (19)
The mean of this distribution is the M-MMSE-MFCC esti-

mate c(i,n')MMMSE and the variance \°(i,n’) is the mini-
mum MSE in the MFCC domain.



To further enhance the performance, observation uncer-
tainty techniques [14] like uncertainty decoding (UD) [15]
or modified imputation (MI) [16] can be used. In the con-
text of the REVERB challenge, MI showed superior perfor-
mance and was therefore used. This is also generally the case
when using UD and MI together with uncertainty propaga-
tion, see [4] for a discussion on the topic. MI can be described
as a model-based feature compensation scheme where the fea-
tures are re-estimated for each Gaussian mixture of the ASR
model as

/) — Eq(l)
Bq (i) + Xe(i,n')
X°(i, ')
g (i) + Xe(i,n')

M-MMSE (Z n/)
)

Hq (2)7 (20)

where f14(4) and X,(¢) are the mean and variance for each
Gaussian mixture of the ASR model.

It should be noted that the posterior distribution in (19)
neglects the correlations between the different Mel-cepstral
coefficients, which are induced by the Mel-filterbank trans-
formation. Although MI can also be computed taking into
consideration these correlations, they are ignored to reduce
the computational load.

3.5. The System Submitted to the REVERB Challenge

Figure 2 depicts the structure of the final system used in
the REVERB task. The system propagates the posterior as-
sociated with the M-MMSE estimate through the ISTFT,
STFT and the MFCC transformation to attain a M-MMSE-
MEFCC estimate as described in this section. For this purpose,
the MVDR beamformer is applied at the SE side to deter-
mine the variances ¢g(k,n), ¢y (k,n) and the observable
Z(k,l). These parameters are then propagated to the ASR
side where a new posterior is computed. This posterior
is then propagated into the MFCC domain to compute the
M-MMSE-MFCC.

In order to improve the performance, the estimated a pri-
ori speech variance at the SE side q@s(k, n) is approximated
directly using the M-MMSE-SA estimate computed i.e.

bs(k,n) ~ A%(k,n), (1)

where the amplitude estimate is obtained with (10).

The resulting M-MMSE-MFCC estimate is applied to
both the training and test data of the REVERB task. When
processing test data, MI is optionally applied to reduce the
acoustic mismatch furthermore.

All methods are real-time capable and introduce no de-
lay, with the exception of a small delay for the computation
of the deltas and accelerations, and the propagation through
the ISTFT and STFT stages. The computational cost of the
M-MMSE-SA estimator is manageable for real-time applica-
tion. The DOA estimator is computationally complex due to
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Fig. 2. Robust ASR system with tight integration of SE and
ASR stages. The M-MMSE is propagated through ISTFT,
STFT and MFCC transformations. Note that the MFCC acts
directly on the provided STFT. Grey blocks denote stages
through which there is uncertainty propagation.

the required polynomial rooting, but also less complex esti-
mators can be used.

Computing a MMSE-MFCC estimate represents a small
increase in cost compared to STFT domain MMSE estimates,
see [4]. The introduction of prior propagation through the
ISTFT and STFT stages increases this cost as it implies a
variable number of matrix multiplications per frame. Never-
theless, the cost of prior propagation can be reduced when the
whole utterance is available. In this case each matrix R,,/_,,
only needs to be computed once. It should be noted that, in
this case, the system is not any more real-time capable as the



whole speech utterance has to be processed before the priors
can be propagated.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

To test the proposed system, the REVERB ASR task was
used [17]. The REVERB ASR task provides two training sets
based on the WSJCAMO corpus [18], a medium vocabulary
size read news database in British English. The first set con-
sists of the WSICAMO clean-training set. The second is a 8
microphone multi-condition version of the same set obtained
by convolving the clean training set with recorded room im-
pulse responses and adding background noise. Regarding de-
velopment and evaluation sets, both simulated data, based on
the WSICAMO and recorded data from the MC-WSJ-AV cor-
pus [19], are provided. The former includes three different
rooms (small, medium, large) and two different recording dis-
tances (near, far) whereas the latter includes one single room
and two possible distances. All development and evaluation
sets were recorded using a circular microphone array with
M = 8 and a radius of 10 cm. Train and test scripts were
provided for the widely used HTK toolbox [20].

Regarding the SE configuration, the STFT was imple-
mented with a square-root Hann window of length of 32 ms,
50% overlap and 512 samples FFT length for the given sam-
pling frequency of 16 kHz. The input and reverberant PSD
matrices were estimated recursively with a time constant of
70 ms. For the noise PSD matrix, a time constant of 150 ms
was used and a fixed a priori speech presence probability
of 0.99 was assumed for the noise estimation procedure [21]
to prevent leakage of speech components into the noise PSD
estimate.

Regarding ASR side configuration, the defaults provided
in the REVERB challenge were used. The STFT configura-
tion corresponded thus to a window of 25 ms with 15 ms over-
lap and 512 samples FFT length with zero padding. To per-
form uncertainty propagation through the MFCC transforma-
tion, a Matlab implementation compatible with the HTK con-
figuration was used'. Full covariance propagation was used
as described in [4]. Note that despite the fact that the origi-
nal challenge MFCC configuration was used, the Matlab im-
plementation led to small differences in the baseline results.
To perform MI on HTK, modified binaries of the recognition
function HVite were compiled using the available patches?.

4.2. Comparison Tests

The final system presented to the REVERB challenge was de-
coupled into three main categories and each tested individu-
ally in all development set scenarios.

I'See https://github.com/ramon-astudillo/stft_up_tools
2See http://www.astudillo.com/ramon/research/stft-up/

The first category corresponded to STFT domain tech-
niques with no integration with the ASR side. In this category
the M-MMSE-SA estimator as described in Section 2 was
used. The second category corresponded to feature compen-
sation techniques: The M-MMSE-MFCC estimator described
in Section 3.5, including prior uncertainty propagation (Prior-
UP) and the re-estimation of ¢g(k,n), was used. The last
category corresponded to feature compensation methods us-
ing model-side information. Here, the previous M-MMSE-
MFCC was combined with MIL.

It should be noted that the eight microphones were always
used when available. This included all test and evaluation sets
and the multi-condition training set.

4.3. Analysis of the Results

Tables 1 and 2 contain the results for the development set on
clean and multi-condition training sets respectively. Table 3
contains the results on the evaluation set that were submitted
to the REVERB challenge.

All the proposed methods provide substantive improve-
ments over the baseline without processing across all condi-
tions with the exception of the smaller Room 1 and clean-
training conditions. The reason for this might be artifacts
caused by overestimation of the diffuse and noise PSDs in
high SNR conditions. This can be mitigated by more ad-
vanced implementations of the estimators, but was was not
implemented due to time constraints. For larger rooms with
stronger reverberation, the processing provides large reduc-
tions of WER, particularly for clean-training. WER reduction
against the baseline for the multi-condition training set, dis-
played in Table 2, are smaller but consistent.

Regarding the comparison across the different categories
considered, the use of the M-MMSE-MFCC feature compen-
sation approach consistently outperformed the M-MMSE-SA
estimator in STFT domain. The only exception was again the
near condition for Room 1 on the multi-condition scenario.
Average scores are however favourable for the M-MMSE-
MEFCC approach both in real and simulated scenarios. It has
to be taken into account that the M-MMSE-MFCC uses in-
directly also the M-MMSE-SA for a refined estimation of
¢s(k,n), as explained in Section 3.5.

Regarding the third category considered, corresponding to
feature compensation methods using model-side information,
results are mixed. Although the results when using MI are
better on average in all test scenarios, differences are rather
small in the simulated data sets. Furthermore, for some room
configurations, in particular larger ones, MI fails to outper-
form the M-MMSE-MFCC estimator alone. Interestingly, MI
provides large improvements in situations where a large mis-
match can be expected. This includes the Room 1 and the
recorded data, where signal processing artifacts can lead to a
mismatch between the clean signal and its estimate. In those
scenarios MI provides WER reductions comparable to those



Table 1. WER scores for the REVERB development sets and the clean-training HTK baseline, no CMLLR used. Integra-
tion modes are: Uncertainty propagation into MFCC domain including prior propagation through resynthesis (Prior-UP) and
modified imputation (MI). The best results are highlighted in bold.

Simulated Data Recorded Data
Room 1 Room 2 Room 2 Avg. Room 1 Avg.
Integration Near Far Near Far Near Far Near Far
No Processing None 14.43 | 25.15 | 43.46 | 86.64 | 52.20 | 88.40 | 51.67 | 88.33 | 87.56 | 87.94
M-MMSE-SA None 19.25 | 27.65 | 18.68 | 36.55 | 24.60 | 47.16 | 28.97 | 58.27 | 61.18 | 59.71
M-MMSE-MFCC Prior-UP 16.94 | 23.57 | 17.20 | 33.47 | 20.80 | 44.29 | 26.03 | 54.15 | 54.41 | 54.27
M-MMSE-MFCC | Prior-UP, MI | 15.34 | 21.85 | 16.96 | 33.67 | 20.99 | 45.03 | 25.64 | 51.72 | 50.31 | 51.02

Table 2. WER scores for the REVERB development sets and the multi-condition-training HTK baseline, no CMLLR used.
Integration modes are: Uncertainty propagation into MFCC domain including prior propagation through resynthesis (Prior-UP)
and modified imputation (MI). The best results are highlighted in bold.

Simulated Data Recorded Data
Room 1 Room 2 Room 2 Avg. Room 1 Avg.
Integration Near Far Near Far Near Far Near Far
No Processing None 16.54 | 18.88 | 23.37 | 43.18 | 27.40 | 46.79 | 29.34 | 52.90 | 50.79 | 51.85
M-MMSE-SA None 15.46 | 17.75 | 17.23 | 26.13 | 18.40 | 30.91 | 20.97 | 4248 | 41.49 | 41.98
M-MMSE-MFCC Prior-UP 1573 | 16.79 | 14.81 | 21.99 | 18.05 | 27.35 | 19.11 | 40.61 | 39.23 | 39.92
M-MMSE-MFCC | Prior-UP, MI | 14.70 | 16.74 | 14.30 | 23.05 | 17.80 | 27.42 | 19.00 | 39.74 | 37.18 | 38.46

Table 3. Submitted WER scores for the REVERB evaluation set and the multi-condition HTK baseline.

Simulated Data Recorded Data
Room 1 Room 2 Room 2 Avg. Room 1 Avg.
Integration Near Far Near Far Near Far Near Far
M-MMSE-MFCC | Prior-UP,MI | 17.18 | 18.18 | 15.68 | 23.91 | 17.8 | 28.08 | 20.14 | 41.14 | 42.3 | 41.72
+CMLLR Prior-UP 14.59 | 17.28 | 15.26 | 20.53 | 16.12 | 24.11 | 17.97 | 35.64 | 37.54 | 36.59

attained when switching from the MSTSA to the M-MMSE-
MEFCC system proposed for the challenge.

Given the obtained results for the development set, it
was decided to submit the system based on the M-MMSE-
MFCC+MI to the challenge. Since Cepstral Mean Subtrac-
tion is used in the default HTK configuration the results were
submitted under the per-file batch category. It should be
noted, however, that the methods are real-time capable. In
addition to this system, a M-MMSE-MFCC estimator using
CMLLR was submitted to the full-batch category. MI was not
included in this last submission due to time and implementa-
tion constraints, although it is likely to bring no improvement
in a full-batch adaptation scenario. Results are summarized
in Table 3.

5. CONCLUSIONS

We proposed a robust ASR system for the REVERB chal-
lenge based on a multichannel feature compensation ap-
proach. The system integrated an M-MMSE estimator in

the ASR side through uncertainty propagation. For this pur-
pose the posterior distribution associated with the M-MMSE
estimate was used. A solution was also proposed to allow
different STFT parameters for the SE and ASR when us-
ing propagation. The resulting system outperforms a recent
STFT domain multichannel STSA estimation method while
remaining real-time capable. The use of model-based feature
compensation in situations of high mismatch is also shown to
be advantageous.
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