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ABSTRACT 

 

A processing scheme is presented to create robust acoustic 

features for the recognition of noisy speech signals at a 

hands-free speech input in reverberant environments. The 

robustness is achieved by extending a Mel cepstral analysis 

scheme by the additional processing steps of a noise 

reduction and a frequency domain linear prediction (FDLP). 

FDLP is a signal processing technique to modify the energy 

contours of subband signals. We analyze the effects of 

FDLP and show its ability to create robust features by 

looking at the energy contours of clean and reverberant 

speech signals. This technique is combined with a noise 

reduction approach that is based on an adaptive filtering in 

the spectral domain. We analyze the effectiveness of our 

approach by running several different recognition 

experiments and evaluating the achieved recognition results. 

The experiments contain recognition tasks with different 

complexity and with a different modeling of speech by 

applying whole-word or phoneme based reference models. 

Besides the recognition of reverberant versions of the 

TIDigits we focus on the experiments as defined by the 

Reverb Challenge task where the focus is put on the effects 

of a hands-free speech input without a lot of noise in the 

background. Furthermore, we created two further versions of 

the development test data to include the effects of typical 

noise scenarios at a realistic signal-to-noise ratio (SNR) in 

room environments. 

 

Index Terms— robust speech recognition, robust 

acoustic features, frequency domain linear prediction, hands-

free speech input 

 

 

1. INTRODUCTION 

 

The application of speech recognition is especially useful 

when people do not have their hands available for 

controlling devices like in the situation of driving a car. 

Such scenarios come along with the need of a hands-free 

speech input. Unfortunately, the acoustic environment 

modifies the speech signal due to the effects of noise and 

reverberation. Thus, a lot of approaches have been 

developed in the field of signal processing to compensate 

these distortion effects. Many approaches are based on the 

usage of two or more microphones with respect to humans 

who perceive sound with their two ears. But so far, a single 

microphone is used in most applications especially in the 

field of speech recognition. Therefore, we focus on the 

processing of a single channel signal within the 

investigations presented in this paper. Regarding the effect 

of an additive noise signal in the background, most 

approaches are based on an adaptive filtering, e.g. [1], [2]. 

Based on a technique for smoothing the adaptive filter 

characteristics [3], we developed an analysis scheme that 

includes this type of filtering [4]. Investigations have been 

carried out to compensate the effects of reverberation in case 

only one microphone is available, e.g. [5], [6], [7]. FDLP 

can be seen as a further technique for the determination of 

robust features [8], [9]. We combine the adaptive filtering 

with the FDLP processing in our approach to compensate 

the effects of noise and reverberation at the same time. 

 

An alternative approach for improving the robustness is 

based on the adaptation of the Hidden-Markov models 

(HMMs) that are used as reference models in most 

recognition systems nowadays. Instead of extracting features 

that are independent of the acoustic input conditions, a set of 

parameters is estimated that contains and defines the 

distortion effects. These parameters are taken to adapt the 

HMMs to the acoustic conditions of each individual 

utterance. We have developed such an adaptation scheme for 

compensating the influence of background noise, an 

unknown frequency characteristics and reverberation [10]. 

So far, the focus of our work in the field of adaptation was 

on the usage of whole-word HMMs. Therefore, we were not 

able to apply this adaptation scheme on the triphone based 

modeling in the context of the Reverb Challenge task within 

the limited time frame. 

 

We present our analysis scheme for the extraction of 

robust features in the next section. Thereby, we focus on the 

explanation of the FDLP processing. Its ability is shown to 

create robust features with respect to the modifications of 

the signals recorded at hands-free mode in a reverberant 

environment. The recognition results are presented in a 

further section for the different recognition experiments. 
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Figure 1: Robust feature extraction scheme 

 

2. EXTRACTION OF ROBUST FEATURES 

 

We present the signal processing scheme in this section as it 

has been used within these investigations. The two 

processing blocks for increasing the robustness against 

additive noise and against reverberation are described in 

separate subsections. Furthermore, we motivate the use of 

FDLP as a technique to create robust features in case of a 

hands-free speech input in a reverberant environment. 

 

2.1. Mel cepstral based analysis scheme 

 

The complete signal processing scheme is shown in figure 1 

as it has been applied to improve speech recognition in the 

presence of noise at a hands-free speech input in a 

reverberant environment. The scheme is based on the well 

known Mel frequency cepstral analysis that has been 

extended by a few processing blocks. The additional blocks 

have been included with the intention to extract acoustic 

features that are fairly robust against the distortion effects of 

noise and reverberation. The main component of the cepstral 

analysis is the DFT (Discrete Fourier Transform) to perform 

a short-term spectral analysis. Within the Reverb Challenge 

framework [11] speech data are processed that have been 

sampled at a rate of 16 kHz. Frames of duration 25 ms 

containing 400 samples are transformed with a DFT of 

length 512. We apply a preemphasis filtering and the 

weighting of the 400 samples with a Hamming window 

before transforming the samples. The Hamming window is 

shifted by 10 ms to estimate consecutive short-term spectra. 

The DFT magnitude spectrum is filtered with an adaptive 

filter scheme to reduce the influence of a stationary noise 

floor. Furthermore, we apply the FDLP processing on the 

filtered DFT spectrum. Details of the adaptive filtering and 

the FDLP processing are presented in the following sections. 

The filtered and modified DFT components are 

separately processed in the three frequency regions from 0 to 

4 kHz, from 4 to 5.5 kHz and from 5.5 to 8 kHz. We use a 

Mel filterbank to reduce the 129 DFT components in the 

range from 0 to 4 kHz to 24 Mel spectral components by 

splitting the frequency range into the corresponding number 

of nonlinearly spaced frequency bands and performing a 

weighted adding of the DFT magnitude components in each 

band. Applying a DCT (Discrete Cosine Transformation) on 

the logarithmic Mel spectrum we determine 12 cepstral 

coefficients C1 to C12. These cepstral coefficients represent 

features that are statistically independent to a large extent. 

Three energy coefficients are determined as further 

coefficients by summing up the spectral magnitudes in the 

three mentioned frequency regions. Thus, we get 15 acoustic 

features that are taken as part of each feature vector and that 

are estimated every 10 ms. 15 Delta and 15 Delta-delta 
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coefficients are added to each feature vector by filtering the 

temporal contour of each feature coefficient with a set of 

filter coefficients that has been proposed as part of the 

robust front-end standardized by ETSI [2]. 

The motivation for calculating energy coefficients 

separately in each of the three frequency regions has been 

the result of earlier investigations [12]. At that time we 

designed a front-end to allow the processing of speech 

signals sampled at rates of 8 kHz or 11 kHz or 16 kHz. The 

front-end can be used as part of a distributed speech 

recognition system where the feature extraction is done in 

any type of terminal, e.g. a mobile phone or a PC, and the 

recognition is performed at a system located at a central 

position inside a network. The idea was the generation of 

exactly the same features in the frequency region from 0 to 4 

kHz independent of the sampling rate. Thus, it would be 

sufficient to train the central recognizer only on speech 

signals sampled at 16 kHz. In case of getting the features 

from a terminal that works at a sampling frequency of 8 or 

11 kHz the distribution functions of the features in the 

higher frequency regions are ignored for the calculation of 

the emission probabilities. Special care has been taken of the 

signal processing so that we create features in the lower 

frequency region that take the same value for signals 

sampled at different rates. For example, the preemphasis 

filtering is realized in the usual way with a FIR filter of first 

order for data sampled at 8 kHz. But special filters have 

been designed for 11 and 16 kHz so that the filter 

characteristics correspond with the filter shape of the 8 kHz 

version in the frequency range up to 4 kHz.   

 

2.2. Adaptive Filtering 

 

To reduce the influence of a stationary noise in the 

background an adaptive filtering is applied in the spectral 

domain. We process the magnitudes of the 257 DFT 

components that are calculated for each frame of the input 

signal and that describe the spectrum in the range from 0 to 

8 kHz. To define the characteristics of the filter an 

estimation of the noise spectrum is needed. An own 

approach [13] is applied for detecting speech pauses and 

estimating the noise spectrum from the spectra in the pause 

segments. We look at the energy contours in the DFT 

subbands. In case we notice the exceeding of an adaptive 

energy threshold in a certain number of subbands we take 

this as indication for the beginning of speech. In a similar 

way the ending of speech is detected when the subband 

energy falls below this threshold in a predefined number of 

subbands. The noise spectrum is estimated by calculating the 

moving average of the DFT spectra during speech pauses. 

The estimated noise spectrum is taken to realize an adaptive 

filtering [1]. The adaptive filtering contains a so called 

cepstro-temporal smoothing of the filter characteristics [3]. 

The smoothing is based on transforming a first estimate of 

the clean speech spectrum into the cepstral domain. The 

contours of most cepstral coefficients are smoothed along 

time. We transform the modified cepstra back into the 

spectral domain to estimate the smoothed characteristics of 

the adaptive filter. This type of smoothing has been 

introduced for the purpose of speech enhancement to reduce 

the amount of musical tones and to improve the subjective 

quality of the noise reduced signal [3]. 

 

2.3. Frequency Domain Linear Prediction (FDLP) 

 

The goal of FDLP is the modification of the energy contour 

in each subband so that this modification covers the effects 

of reverberation to a large extent. FDLP is based on the idea 

of treating the short-term energy contour in a single subband 

as the filter characteristic of a DPCM (Differential Pulse 

Code Modulation) filter. DPCM is usually applied in the 

field of speech coding to encode the spectral characteristics 

of short speech segments with a length of about 20 ms. The 

filter coefficients of a FIR filter are estimated for the 

encoding to create a differential signal with minimum 

energy. Taking the zeros of the encoding filter as poles of an 

inverse filter on the decoding side we can describe the 

envelope of the short-term speech spectrum with an all-pole 

filter characteristic. The locations of the poles correspond to 

the formant frequencies of the vocal tract in case of 

articulating a voiced sound. The analysis of short segments 

and the transmission of the filter coefficients are known as 

linear predictive coding (LPC). 

 

The effect of analyzing the envelope or a smoothed 

version of a spectrum has been taken as motivation to apply 

the idea of DPCM filtering in a different domain [8], [9]. 

Creating a smoothed version of the short-term energy 

contour for a whole speech utterance is the idea of the 

method referred to as FDLP. Therefore, the contour of the 

short-term energy in a subband is treated as a spectrum. The 

corresponding “time signal” is calculated by applying an 

inverse DFT (IDFT) on the contour as it shown in figure 2. 

In our case, the sequence of the DFT coefficients in each 

DFT bin is considered as the energy contour in the 

corresponding subband. So, the processing shown in figure 2 

is individually applied to each of the 257 DFT bins. The 

output signal of the IDFT is taken as input to estimate the 

parameters of the LPC filter. The order of the filter is chosen 

dependent on the length of the energy contour respectively 

the length of the whole speech signal. We define the filter 

complexity with a value describing the filter order per 

second. Typically, an order of about 30 per second is 

chosen. 

The predictor coefficients ai can be taken to describe a 

smoothed version of the energy contour as the spectral 

characteristics of an all-pole filter:     
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Figure 2: FDLP processing scheme 

 

The poles of a DPCM filter usually define the 

frequencies where the spectrum has its maxima. In our case, 

the poles define the position of the peaks in the energy 

contour. Choosing an order of 30 poles per second 

corresponds to the definition of up to 15 peaks per second.  

It turned out in earlier investigations that it can be of 

advantage to neglect the gain factor g [14]. This is visualized 

in figure 2 by moving the switch to the position where g is 

equal 1. The gain normalization leads to an accumulated 

subband energy that takes the same value in each subband. 

The effect will be similar as applying the well known 

cepstral mean normalization. In case of a spectral weighting, 

e.g., due to the microphone, the degradation of the error 

rates will be usually reduced by such a type of frequency 

dependent gain normalization. 

 

2.4. The effect of FDLP in case of reverberation 

 

Looking at the condition of a hands-free speech input inside 

a room the modification of the speech signal by the acoustic 

environment has to be considered. The sound propagation 

can be modeled as an additive superposition of the sound on 

the direct path from the speaker to the microphone and a 

huge number of single and multiple reflections at the walls 

and the interior. In terms of signal processing the 

transmission in a room can be described as a convolution of 

the speech signal and the room impulse response (RIR).  The 

example of a RIR is shown in figure 3 as it has been 

estimated for the transmission in a small conference room at 

a distance of 2.5 m between speaker and microphone.  
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Figure 3: RIR measured in a meeting room 

 

It becomes obvious that the room impulse response has a 

fairly long duration of several hundred milliseconds. The 

peak value at the beginning of the RIR corresponds to the 

sound on the direct path between speaker and microphone. 

The so called reverberation time T60 is the parameter that 

can be taken to define the decrease of the RIR amplitudes 

along time. The reverberation time corresponds to the time 

until the sound level decreases by 60 dB when switching off 

a stationary sound excitation inside a room. T60 takes a value 

of about 0.65 s for the RIR shown in figure 3. 

In general, the influence of a hands-free input on the 

speech signal can be described by 2 aspects. The first one is 

the effect called “spectral coloration”. Transforming the RIR 

to the spectral domain the acoustic transmission in the room 

can be modeled as the multiplication of the speech spectrum 

and the corresponding transfer function. But, considering the 

analysis of short segments as it is done in the field of speech 

recognition the description as a multiplication of spectra 

does not hold due to the fact that the RIR is much longer 
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than the analysis window of the short-time spectral analysis. 

Looking at the influence of a hands-free speech input as a 

“spectral coloration” only might be approximately correct 

when either the RIR is fairly short or the speaker is close to 

the microphone. In case of a close speaker the energy of the 

late reflections is relatively low in comparison to the energy 

of the direct sound. As a consequence of a long RIR all 

approaches that try to compensate the influence of a nearly 

stationary transfer function, like for example cepstral mean 

normalization, will not be able to handle the effects of 

reverberation overall.  

The second aspect that describes the effect of 

reverberation becomes obvious when examining the 

contours of the short-term energy in subbands. The 

transmission in a reverberant environment can be 

approximately described as a low-pass filtering of these 

energy contours [15]. In figure 4 two versions are shown for 

the energy contour of a speech signal containing the 

utterance of three digits.  
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Figure 4: Energy contours of a clean signal and after 

recording in hands-free mode. 

The envelope of the clean signal as well as the contour 

after the transmission in a room are shown assuming an 

exponentially decaying RIR with a reverberation time of 

about 0.5 s. We can see the so called reverberation “tails” 

due to the reflections of the sound. This leads to a smearing 

of the energy so that for example the pauses between the 

words are no longer characterized by energy close to zero. 

Furthermore, the spectral characteristics of a sound with low 

energy will be partly covered by a preceding sound with 

high energy.  

To analyze the influence of FDLP processing in this 

context two further contours are visualized in figure 5. Both 

contours shown in figure 4 have been processed by FDLP 

with a filter order of 15 per second. Besides a small shift in 

time due to the reverberation the two contours in figure 5 

look very similar. Especially during speech pauses both 

curves have a similar characteristic. This can be taken as an 

indication that the acoustic features will also be fairly similar 

after processing the energy contours in subbands from either 

clean or reverberant signals with FDLP. The creation of 

similar features is exactly the goal of a “robust” feature 

extraction scheme. This might indicate a good usability for 

achieving a high recognition performance of reverberant 

signals recorded in hands-free mode. 
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Figure 5: Energy contours after processing the clean 

signal and the reverberant signal by FDLP with a filter 

order of 15 per second. 

3. RECOGNITION EXPERIMENTS 

 

We present the results of several recognition experiments in 

this section. The first experiment is based on the TIDigits 

database [16] and the usage of whole word HMMs for the 

recognition. We focus on the effect of reverberation only by 

creating reverberant versions of the TIDigits with a set of 

RIRs that have been estimated inside a conference room at a 

varying distance between speaker and microphone. The 

Reverb Challenge task [11] is considered as the second 

experiment where the focus is also on the effect of 

reverberation. But the task contains the recognition of a 

large vocabulary of about 5000 words. The experiments are 

based on the usage of triphone HMMs. To investigate also 

the effects of a stronger background noise as it will occur in 

a lot of practical applications we created two further 

versions of the WSJCAM0 data [17] that have been chosen 

as development test data within the Reverb Challenge task. 

We present the results on these data in a third subsection. 

 

3.1. Reverberant digits at a varying distance between 

speaker and microphone 

 

A lot of investigations in the field of robust recognition in 

hands-free mode examined a speech input at a large distance 

between speaker and microphone. We have been interested 

to analyze the recognition performance dependent on the 
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distance between speaker and microphone. An increasing 

distance comes along with a decreasing ratio between the 

energy of the direct sound and the energy of the later 

reflections. This leads to a higher distortion of the speech 

signal for an increasing distance. We measured a set of RIRs 

in a small meeting room (F-101) at 7 different positions of 

the microphone. These impulse responses are available for 

download [18]. A hardware and software setup developed in 

the SpeeCon project [19] was applied to measure the RIRs. 

Several versions of the TIDigits have been created by 

convolving the clean signals of the TIDigits test set with 

each RIR. In contrast to the Reverb Challenge data we used 

a version of the TIDigits that have been sampled at a rate of 

8 kHz. With respect to the processing scheme shown in 

figure 1 the energy values in the frequency regions above 4 

kHz were not available as acoustic parameters. 

The word error rates are shown in figure 6 for the 7 

different positions of the microphone in the meeting room. 

We compared the results applying 4 different analysis and 

recognition schemes. In all cases, two gender dependent 

whole-word HMMs have been trained for each English digit 

(zero – nine, oh) based on the analysis of the complete 

training set of the clean TIDigits. Each HMM consists of 16 

states with a mixture of 2 Gaussians to model the occurrence 

of each acoustic parameter in each state. A set of 39 acoustic 

parameters has been used in all configurations. The set 

consists of the 12 Mel cepstral coefficients and the frame 

energy as well as the corresponding Delta and Delta-delta 

coefficients. 
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Figure 6: Word error rates for the recognition in hands-

free mode at different distances.  

The highest error rates are achieved for the robust front-

end standardized by ETSI [2] as well as for an own Mel 

cepstral analysis without any additional processing or 

adaptation to compensate the effects of reverberation. The 

own processing corresponds to the scheme in figure 1 

without the adaptive filtering and the FDLP processing. As 

expected, the performance decreases when moving to higher 

distances where the energy of the direct sound is less in 

relation to the energy of the reflected sound. Surprisingly, 

the performance of the ETSI scheme is even less than the 

standard cepstral analysis. But the effects of reverberation 

were not taken into account and were not evaluated at the 

time when this robust feature extraction scheme was 

developed. 

Based on the Mel cepstral analysis we applied our HMM 

adaptation scheme [10]. We adapt the cepstral coefficients 

and the energy coefficient as well as the corresponding Delta 

and Delta-Delta coefficients as they occur as means of the 

Gaussian distributions in each HMM state. The 

reverberation time and the spectrum of a stationary 

background noise are estimated as adaptation parameter. We 

perform the adaptation once during each speech input when 

the beginning of speech is detected. The recognition 

performance considerably increases when applying the 

adaptation technique. This is also true when applying the 

FDLP processing. The reduction of error rates is almost the 

same for both techniques.  FDLP is done with a filter order 

of 30 per second and including the gain normalization.  

Looking at the word error rates in table 1 for the 

recognition of the clean TIDigits, FDLP causes a 

degradation of the recognition performance in comparison to 

the Mel cepstral analysis without or with HMM adaptation. 

This might be caused by the smearing effect on the energy 

contours. 

Table 1: Word error rates for clean TIDigits. 

Mel cepstral 

analysis 

HMM adaptation FDLP with gain 

normalization 

0.56 % 0.55 % 0.85 % 

 

3.2. The Reverb Challenge task  

 

We applied our processing scheme on the data of the Reverb 

Challenge task. Besides substituting the feature extraction, 

we have been using the provided framework [11] for training 

triphone HMMs with the clean WSJCAM0 data [17]. 

Furthermore, we applied the provided scripts for performing 

the recognition experiments with HTK [21]. Two 

recognition experiments have been defined as part of the 

framework. 

The first one is based on a set of 742 sentences from the 

WSJCAM0 data. These data have been used as development 

test data. The set has been split into 3 subsets (r1, r2 and r3). 

The word error rates are listed in table 2 for the recognition 

of the clean data. Results are presented for the feature 

extraction as proposed in the framework and as done with 

HTK in comparison to applying our feature extraction 

scheme. As already shown in the preceding section FDLP 

leads to a deterioration of the recognition performance when 
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applied on clean data. It looks like the smoothing of the 

subband energy contours causes a certain loss of 

information. 

Table 2: Word error rates for the clean development test set. 

devset – clean  

analysis set r1 set r2 set r3 

MFCC_0_D_A_Z 10.50% 11.51% 10.81% 

NR_FDLP30 17.65% 18.12% 18.25% 

 
The data of the three subsets have been taken to create 

several reverberant versions by convolving the speech 

signals with a set of RIRs to simulate the recording in hands-

free mode. Furthermore, recorded background noise has 

been added at a SNR of 20 dB. The RIRs have been 

measured in 3 different rooms at a smaller and at a larger 

distance between speaker and microphone. Each RIR of one 

of the 3 rooms is separately applied to one of the 3 subsets. 

Thus, the subsets get the indication room1, room2 and 

room3 in table 3 showing the word error rates for the 

distorted versions of the 3 subsets.  

 

Table 3: Error rates for the development test set. 

devset – near  

analysis room1 room2 room3 

MFCC_0_D_A_Z 15.29% 43.90% 51.95% 

NR_FDLP30 20.06% 26.57% 29.90% 

 devset – far 

MFCC_0_D_A_Z 25.29% 85.80% 88.90% 

NR_FDLP30 27.51% 68.33% 70.72% 

 
The case of a smaller distance is indicated by the term 

near. The large distance is indicated by the term far. It turns 

out that the FDLP processing leads to a considerable 

reduction of the error rates in the presence of a stronger 

reverberation effect. The improvement becomes especially 

obvious in the case of a higher reverberation time and a 

larger distance between speaker and microphone. 

Later on, a second subset of another 742 WSJCAM0 

utterances has been released as evaluation set. The splitting 

in 3 subsets and the distortion of the data has been done in a 

similar way than for the development set. The corresponding 

error rates are listed in table 4. The term “SimData” is 

introduced in table 4 indicating the creation of these data by 

a simulation of the hands-free recording in a slightly noisy 

environment. Almost the same relative improvement or 

degradation occurs as for the development set when 

comparing the results for the two feature extraction schemes. 

The second recognition experiment is based on a set of 

speech signals that have been recorded in hands-free mode 

[20]. The term “RealData” is used in table 4 as reference to 

these experiments. In total this set contains 186 sentences 

where each utterance has been recorded at a smaller distance 

(near) and at a larger distance (far). The word error rates are 

listed in table 4 for the evaluation set only. As in case of the 

first experiment with “SimData” there is almost no 

difference between the results achieved with the 

development set and with the evaluation set. We observe a 

considerable improvement of the recognition performance 

with our feature extraction scheme. 
    
3.3. Noisy WSJCAM0 test sets  

 

The Reverb Challenge task considers the presence of 

background noise only to a small extent. A stationary noise 

signal is added at the high SNR of 20 dB. In a lot of 

practical applications the influence of noise will be stronger 

than it is taken into account by the Reverb Challenge task. 

Thus, we created two further versions of the development 

test set consisting of 742 utterances. We added car noise at a 

SNR of 10 dB for one version and noise signals recorded 

inside rooms for the other version. In case of the car noise 

we applied also a RIR that we have measured inside a car. 

We randomly selected noise segments from a number of 

recordings inside different cars and inside different rooms. 

Word error rates are listed in table 5. We can proof with this 

experiment that our analysis technique shows a higher 

robustness against additive noise. 

 

Table 4: Word error rates (%)  for the reverberant evaluation test sets. 
 

SimData RealData 

Room1 Room2 Room3 Average Room1 Average 

 

 

analysis Near Far Near Far Near Far  Near Far  

MFCC_0_D_A_Z 18.06 25.38 42.98 82.20 53.54 88.04 51.68 % 89.72 87.34 88.53 % 

NR_FDLP30 21.08 25.50 27.72 58.76 31.72 69.73 39.07 % 75.53 72.48 74.00 % 
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Table 5: Error rates for the noisy development test set 

 

interior noise (SNR=10dB)  

analysis set r1 set r2 set r3 

MFCC_0_D_A_Z 44.5 % 45.5 % 44.4 % 

NR_FDLP30 31.5 % 32.7 % 30.5 % 

 car noise (SNR=10dB) 

MFCC_0_D_A_Z 40.8 % 41.9 % 39.6 % 

NR_FDLP30 32.6 % 35.0 % 33.1 % 

 

 

4. CONCLUSIONS 

 

We have presented a feature extraction scheme to cope with 

the effects of additive noise and a hands-free recording in a 

reverberant environment. Recognition results have been 

presented for different experiments. We could proof that we 

can improve the recognition performance in comparison to a 

typical Mel cepstral analysis scheme for both distortion 

effects. 

The FDLP processing shows the tendency to degrade the 

recognition of clean data. We intend to estimate the presence 

of reverberation in future work so that we could disable the 

FDLP processing or apply FDLP with a higher filter order in 

case of clean data to reduce the loss in performance. 
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