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ABSTRACT
We introduce a novel speech enhancement algorithm for re-
moving reverberation and noise from recorded speech data.
Our approach centers around using a single-channel min-
imum mean-square error log-spectral amplitude (MMSE-
LSA) estimator, which applies gain coefficients in a time-
frequency domain to suppress noise and reverberation. The
main contribution of this paper is that the enhancement is
done in a time-frequency domain that is coherent with speech
signals over longer analysis durations than the short-time
Fourier transform (STFT) domain. This extended coherence
is gained by using a linear model of fundamental frequency
variation over the analysis frame. In the multichannel case,
we preprocess the data with either a minimum variance distor-
tionless response (MVDR) beamformer, or a delay-and-sum
beamformer (DSB). We evaluate our algorithm on the RE-
VERB challenge dataset. Compared to the same processing
done in the STFT domain, our approach achieves significant
improvement on the REVERB challenge objective metrics,
and according to informal listening tests, results in fewer
artifacts in the enhanced speech.

Index Terms— Speech enhancement, speech derever-
beration, time-warping, fan-chirp transform, adaptive basis,
beamforming

1. INTRODUCTION AND PRIOR WORK

The enhancement of speech signals in the presence of rever-
beration and noise remains a challenging problem with many
applications. Many methods are prone to generating artifacts
in the enhanced speech, and must trade off noise reduction
against speech distortion.

In this paper, we describe a new enhancement algorithm
that suppresses both reverberation and background noise. We
combine a statistically optimal single-channel enhancement
algorithm that suppresses background noise and reverbera-
tion with an adaptive time-frequency transform domain that
is coherent with speech signals over longer durations than the
short-time Fourier transform (STFT). Thus, we are able to
use longer analysis windows while still satisfying the assump-
tions of the optimal single-channel enhancement filter. Multi-
channel processing is made possible using a classic minimum
variance distortionless response (MVDR) beamformer or, in
the case of two-channel data, a delay-and-sum beamformer
(DSB) preceding the single-channel enhancement.

First, we review the speech enhancement and derever-
beration problem, as well as the enhancement algorithm we
use proposed by Habets [1], which suppresses both noise and
late reverberation based on a statistical model of reverbera-
tion. Then, we describe the fan-chirp transform, proposed
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by Weruaga and Kèpesi [2, 3] and improved upon by Can-
cela et al. [4], which provides an enhancement domain, the
short-time fan-chirp transform (STFChT), that better matches
time-varying frequency content of voiced speech. We dis-
cuss why performing the enhancement in the STFChT domain
gives superior results compared to the STFT domain. Finally,
we present our results on the REVERB challenge dataset [5],
which shows that our new method achieves superior results
versus conventional STFT-based processing in terms of ob-
jective measures.

Our basic multichannel architecture of single-channel en-
hancement preceded by beamforming is not unprecedented.
Gannot and Cohen [6] used a similar architecture for noise
reduction that consists of a generalized sidelobe cancellation
(GSC) beamformer followed by a single-channel post-filter.
Maas et al. [7] employed a similar single-channel enhance-
ment algorithm for reverberation suppression and observed
promising speech recognition performance in even highly re-
verberant environments.

There have been several dereverberation and enhancement
approaches that estimate and leverage the time-varying funda-
mental frequency f0 of speech. Nakatani et al. [8] proposed
a dereverberation method using inverse filtering that exploits
the harmonicity of speech to build an adaptive comb filter.
Kawahara et al. [9] used adaptive spectral analysis and esti-
mates of f0 to perform manipulation of speech characteristics.

Droppo and Acero [10] observed how the fundamental
frequency of speech can change within an analysis window,
and proposed a new framework that could better predict the
energy of voiced speech. Dunn and Quatieri [11] used the
fan-chirp transform for sinusoidal analysis and synthesis of
speech, and Dunn et al. [12] also examined the effect of var-
ious interpolation methods on reconstruction error. Pantazis
et al. [13] proposed an analysis/synthesis domain that uses
estimates of instantaneous frequency to decompose speech
into quasi-harmonic AM-FM components. Degottex and
Stylianou [14] proposed another analysis/synthesis scheme
for speech using an adaptive harmonic model that they claim
is more flexible than the fan-chirp, as it allows nonlinear
frequency trajectories.

To our knowledge, single-channel enhancement has not
been attempted in these new related transform domains. Here,
we demonstrate improved performance using the STFChT in-
stead of the STFT.

2. OPTIMAL SINGLE-CHANNEL SUPPRESSION OF
NOISE AND LATE REVERBERATION

In this section, we review the speech enhancement problem
and a popular statistical speech enhancement algorithm, the
minimum mean-square error log-spectral amplitude (MMSE-
LSA) estimator, which was originally proposed by Ephraim
and Malah [15, 16] and later improved by Cohen [17]. We

REVERB Workshop 2014

1



review the application of MMSE-LSA to both noise reduction
and joint dereverberation and noise reduction (the latter of
which was proposed by Habets [1]).

2.1. Noise reduction using MMSE-LSA
A classic speech enhancement algorithm is the minimum
mean-square error (MMSE) short-time spectral amplitude
estimator proposed by Ephraim and Malah [15]. They later
refined the estimator to minimize the MSE of the log-spectra
[16]. We will refer to this algorithm as LSA (log-spectral am-
plitude). Minimizing the MSE of the log-spectra was found to
provide better enhanced output because log-spectra are more
perceptually meaningful. Cohen [17] suggested improve-
ments to Ephraim and Malah’s algorithm, which he referred
to as “optimal modified log-spectral amplitude” (OM-LSA).

Given samples of a noisy speech signal

y[n] = s[n] + v[n], (1)

where s[n] is the clean speech signal and v[n] is additive
noise, the goal of an enhancement algorithm is to estimate
s[n] from the noisy observations y[n]. The LSA estimator
yields an estimate Â(d, k) of the clean STFT magnitudes
|S(d, k)| (where S(d, k) are assumed to be normally dis-
tributed) by applying a frequency-dependent gainGLSA(d, k)
to the noisy STFT magnitudes |Y (d, k)|:

Â(d, k) = GLSA(d, k)|Y (d, k)|. (2)

Given these estimated magnitudes, the enhanced speech is re-
constructed from STFT coefficients combining Â(d, k) with
noisy phase: Ŝ(d, k) = Â(d, k)ej∠Y (d,k). The LSA gains are
computed as [16, (20)]:

GLSA(d, k) =
ξ(d, k)

1 + ξ(d, k)
exp

{
1

2

∫ ∞
v(d,k)

e−t

t
dt

}
, (3)

where ξ(d, k) is the a priori signal-to-noise ratio (SNR) for
the kth frequency bin of the dth frame, and is defined to be
ξ(d, k)

∆
= λs(d,k)

λv(d,k) , where λs(d, k) = E
{
|S(d, k)|2

}
is the

variance of S(d, k) and λv(d, k) = E
{
|V (d, k)|2

}
is the

variance of V (d, k). The variable v(d, k) = ξ(d,k)
1+ξ(d,k)γ(d, k),

where γ(d, k) is the a posteriori SNR for the kth frequency
bin of the dth frame, defined as γ(d, k)

∆
= |Y (d,k)|2

λv(d,k) .

Cohen [17] refined Ephraim and Malah’s approach to in-
clude a lower bound Gmin for the gains as well as an a priori
speech presence probability (SPP) estimator p(d, k). Cohen’s
estimator is as follows [17, (8)]:

GOM−LSA = {GLSA(d, k)}p(d,k) ·G1−p(d,k)
min . (4)

Cohen also derived an efficient estimator for the SPP p(d, k)
[17] that exploits the strong interframe and interfrequency
correlation of speech in the STFT domain.

2.2. Joint dereverberation and noise reduction
Habets [1] proposed a MMSE-LSA enhancement algorithm
that uses a statistical model of reverberation to suppress both
noise and late reverberation. The signal model he uses is

y[n] = s[n] ∗ h[n] + v[n] = xe[n] + x`[n] + v[n], (5)

where s[n] is the clean speech signal, h[n] is the room im-
pulse response (RIR), and v[n] is additive noise. The terms
xe[n] and x`[n] correspond to the early and late reverberated
speech signals, respectively. The partition between early and
late reverberations is determined by a parameter ne, which is
a discrete sample index. All samples in the RIR before ne are
taken to cause early reflections, and all samples after ne are
taken to cause late reflections [1]. Thus,

h[n] =

0, if n < 0
he[n], if 0 ≤ n < ne
h`[n] if ne ≤ n.

(6)

Using these definitions, xe[n] = s[n] ∗ he[n] and x`[n] =
s[n] ∗ h`[n].

Habets proposed a generalized statistical model of re-
verberation that is valid both when the source-microphone
distance is less than or greater than the critical distance [1].
This model divides the RIR h[n] into a direct-path component
hd[n] and reverberant component hr[n]. Both direct-path and
reverberant components are taken to be white, zero-mean,
stationary Gaussian noise sequences bd[n] and br[n] with
variances σ2

d and σ2
r enveloped by an exponential decay,

hd[n] = bd[n]e−ζ̄n and hr[n] = br[n]e−ζ̄n, (7)

where ζ̄ is related to the reverberation time T60 by [1]:

ζ̄ =
3 ln(10)

T60fs
. (8)

Using this model, the expected value of the energy enve-
lope of h[n] is

E
[
h2[n]

]
=

σ
2
de
−2ζ̄n, for 0 ≤ n < nd

σ2
re
−2ζ̄n, for n ≥ nd

0 otherwise.
(9)

Under the assumptions that the speech signal is stationary
over short analysis windows (i.e., duration much less than
T60), Habets proposed [1, (3.87)] the following model of the
spectral variance of the reverberant component xr[n]:

λxr (d, k) =e−2ζ̄(k)Rλxr (d− 1, k)...

+
Er
Ed

(
1− e−2ζ̄(k)R

)
λxd(d− 1, k), (10)

where R is the number of samples separating two adjacent
analysis frames and Er/Ed is the inverse of the direct-to-
reverberant ratio (DRR). Thus, the spectral variance of the
reverberant component in the current frame d is composed of
scaled copies of the spectral variance of the reverberation and
the spectral variance of the direct-path signal from the previ-
ous frame d− 1.

Using this model, the variance of the late reverberant com-
ponent can be expressed as [1, (3.85)]:

λx`(d, k) = e−2ζ̄(k)(ne−R)λxr

(
d− ne

R
+ 1, k

)
, (11)

which is quite useful in practice, because the variance of the
late-reverberant component can be computed from the vari-
ance of the total reverberant component.
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To suppress both noise and late reverberation, the a priori
and a posteriori SNRs ξ(d, k) and γ(d, k) from the pre-
vious section become a priori and a posteriori signal-to-
interference ratios (SIRs), given by [1, (3.25), (3.26)]:

ξ(d, k) =
λxe(d, k)

λx`(d, k) + λv(d, k)
(12)

and

γ(d, k) =
|Y (d, k)|2

λx`(d, k) + λv(d, k)
. (13)

The gains are computed by plugging the SIRs in (12) and (13)
into (3) and (4). Habets suggested an additional change to (4),
which makes Gmin time- and frequency-dependent. This is
done because the interference of both noise and late reverber-
ation is time-varying. The modification is [1, (3.29)]

Gmin(d, k) =
Gmin,x` λ̂x`(d, k) +Gmin,vλ̂v(d, k)

λ̂x`(d, k) + λ̂v(d, k)
. (14)

Notice that two parameters in (8) and (10) are not known
a priori; namely, T60 and the DRR. These parameters must
be blindly estimated from the data. For T60 estimation,
Löllmann et al. [18] propose an algorithm, which we found
to be effective. As for the DRR, Habets suggested an online
adaptive procedure [1, §3.7.2].

3. ANALYSIS AND SYNTHESIS USING THE
FAN-CHIRP TRANSFORM

In this section, we review the forward short-time fan-chirp
transform (STFChT) and describe a method of inverting the
STFChT.

3.1. The forward fan-chirp transform
We adopt the fan-chirp transform formulation used by Can-
cela et al. [4]. The forward fan-chirp transform is defined
as

X(f, α) =

∫
x(t)φ′α(t)e−j2πfφα(t)dt (15)

where φα(t) =
(
1 + 1

2αt
)
t and φ′α(t) = 1+αt. The variable

α is an analysis chirp rate. Using a change of variable τ ←
φα(t), (15) can be written as the Fourier transform of a time-
warped signal:

X(f, α) =

∫ ∞
−∞

x(φ−1
α (τ))e−j2πfτdτ. (16)

The short-time fan-chirp transform (STFChT) of x(t) is
defined as the fan-chirp transform of the dth short frame of
x(t):

Xd(f, α̂d) =

∫ Tw/2

−Tw/2
w(τ)xd(φ

−1
α̂d

(τ))e−j2πfτdτ (17)

where w(t) is an analysis window, α̂d is the analysis chirp
rate for the dth frame given by (21), and xd(t) is the dth short
frame of the input signal of duration T :

xd(t) =

{
x(t− dThop), −T/2 ≤ t ≤ T/2

0, otherwise.
(18)

T is the duration of the pre-warped short-time duration,
Thop is the frame hop, Tw is the post-warped short-time du-
ration, and w(t) is a Tw-long analysis window. The analysis
window is applied after time-warping so as to avoid warping
of the window, which can cause unpredictable smearing of the
Fourier transform.

Implementing the fan-chirp transform as a time-warping
followed by a Fourier transform allows efficient implementa-
tion, consisting simply as an interpolation of the signal fol-
lowed by an FFT. In the implementation provided by Cancela
et al. [4], the interpolation used in the forward fan-chirp trans-
form is linear.

Kèpesi and Weruaga [2] provide a method for determina-
tion of the analysis chirp rate α using the gathered log spec-
trum (GLogS). The GLogS is defined as follows:

ρ(f0, α) =
1

Nh

Nh∑
k=1

ln |X(kf0, α)| (19)

where Nh is the maximum number of harmonics that fit
within the analysis bandwidth. That is,

Nh =

⌊
fs

2f0

(
1 + 1

2 |α|Tw
)⌋ . (20)

Cancela et al. [4] proposed several enhancements to the
GLogS. First, they observed improved results by replacing
ln | · | with ln (1 + γ |·|). Cancela et al. note that this expres-
sion approximates a p-norm, with 0 < p < 1, where lower
values of γ with γ ≥ 1 approach the 1-norm, while higher
values approaches the 0-norm. Cancela et al. note that γ = 10
gave good results for their application.

Additionally, Cancela et al. propose modifications that
suppress multiples and submultiples of the current f0. Also,
they propose normalizing the GLogS such that is has zero
mean and unit variance. This is necessary because the vari-
ance of the GLogS increases with increasing fundamental fre-
quency. For mean and variances measured over all frames in
a database, a polynomial fit is determined and the GLogS are
compensated using these polynomial fits.

Let ρ̄d(f0, α) be the GLogS of the dth frame with these
enhancements applied. For practical implementation, finite
setsA of candidate chirp rates andF0 of candidate fundamen-
tal frequencies are used, and the GLogS is exhaustively com-
puted for every chirp rate in A and fundamental frequency in
F0. The analysis chirp rate α̂d for the dth frame is thus found
by

α̂d = argmax
α∈A

max
f0∈F0

ρ̄d(f0, α). (21)

3.2. The inverse fan-chirp transform
Inverting the fan-chirp transform is a matter of reversing the
steps used in the forward transform. Thus, the inverse fan-
chirp transform for a short-time frame consists of an inverse
Fourier transform, removal of the analysis window, and an
inverse time-warping. The removal of the analysis window
w(t) from the Tw-long warped signal limits the choice of
analysis windows to positive functions only, such as a Ham-
ming window, so the window can be divided out. Also, since
the warping is nonuniform, it is possible that the sampling
interval between points may exceed the Nyquist sampling in-
terval. To combat this, the data should be oversampled before
time-warping, which means the data must be downsampled
after undoing the time-warping.

3



The choice of post-warped duration Tw and the method of
interpolation used in the inverse time-warping affect the re-
construction error of the inverse fan-chirp transform. There is
a trade-off between reconstruction performance and compu-
tational complexity, because interpolation error decreases as
interpolation order increases. Kèpesi and Weruaga [19] ana-
lyzed fan-chirp reconstruction error with respect to order of
the time-warping interpolation and oversampling factor, and
found that for cubic Hermite splines and an oversampling fac-
tor of 2, a signal-to-error ratio of over 30dB can be achieved.
For our application, we choose an oversampling factor of 8
and cubic-spline interpolation.

4. MMSE-LSA IN THE FAN-CHIRP DOMAIN

In this section we analyze performing joint dereverberation
and noise reduction using MMSE-LSA in the STFChT do-
main and provide an example for why the STFChT (17),
which is a domain that is more coherent with speech signals,
is a more appropriate enhancement domain than the STFT.

The MMSE-LSA framework for joint dereverberation and
noise reduction implicitly assumes that the the frequency con-
tent of speech does not change very much over the analysis
duration. Such an assumption relies on the local stationar-
ity of speech signals within the analysis frame. For voiced
speech, this is essentially equivalent to the fundamental fre-
quency f0 being constant over the analysis frame, and the fre-
quency variation of voiced speech limits analysis durations to
10-30ms.

Using shorter analysis frames means only a finite amount
of approximately stationary data is available at any specific
time, and this finite amount of data limits the performance of
statistical estimators. To improve this situation, we propose to
increase the analysis duration by changing the time base of the
analysis such that there is less frequency variation within the
frame, which makes the data more stationary. This time base
modification is performed using the fan-chirp, which uses a
linear model of frequency variation within the frame.

To give intuition about the benefits of the fan-chirp in the
presence of reverberation, we present a simple example in fig-
ure 1. Consider two successive Gaussian-enveloped harmonic
chirps with duration 200 ms and spaced 100 ms apart. Let the
f0 of the first harmonic chirp start at 200 Hz and rise to 233
Hz, and let the f0 of the second harmonic chirp have a range
from 250 Hz falling to 200 Hz. Both chirps have 20 harmon-
ics. This sequence of harmonic chirps has parameters that
are typical of two successive voiced vowels (here we do not
consider the spectral shape imposed by a vocal tract filter, for
simplicity). Now, let us apply reverberation to this signal (we
use the first channel of the MediumRoom2 far AnglA RIR
provided in the REVERB challenge development set [5]), and
examine the clean and reverberated versions in both the STFT
and STFChT domains. The result is shown in figure 1. STFT
and STFChT parameters are exactly matched, with a sam-
pling rate of fs = 16kHz, a Hamming window of duration
2048 samples, a frame hop of 128 samples, and a 3262-length
FFT.

Notice that at higher frequencies in the STFT of the clean
signal (top left panel of figure 1), the harmonics become
broader and more smeared across frequency. In contrast, the
STFChT of the clean signal (center left panel of figure 1) ex-
hibits narrow lines at all frequencies. When reverberation is
applied, the STFT of the reverberated signal (top right panel
of figure 1) exhibits smears that become wider with increas-
ing frequency, and adjacent harmonics even become smeared
together. In contrast, in the STFChT of the reverberated
signal (center right panel of figure 1), the direct path sig-
nal shows up as narrow lines at all frequencies, while some
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Fig. 1: Simple example showing benefits of fan-chirp both
for narrower harmonics across frequency and for better coher-
ence with direct path signal in the presence of reverberation.
Test signal is two consecutive synthetic speech-like harmonic
stacks. All colormaps are identical with a dynamic range of
40dB. Left plots are the representations of the clean signal and
right plots are the representations of the reverberated signal.
The chosen analysis chirp rates α̂d are shown in the bottom
plots.

smearing results in frames that contain reverberant energy.
One cause of the smearing during reverberation-dominated
frames seems to be errors in the estimation of α̂d, the analysis
chirp rate, caused by the additional reverberant components,
which are shown in the bottom panels of figure 1. Despite
these estimation errors, the STFChT still seems to give a
better representation of the signal compared to the STFT,
because the STFChT reduces smearing of higher-frequency
components and achieves better coherence with the direct-
path signal (i.e., direct-path signals show up as more narrow
lines).

5. IMPLEMENTATION

Our algorithms are implemented in MATLAB, and we use
utterance-based processing. The algorithm starts by using the
utterance data to estimate the T60 time of the room using the
blind algorithm proposed by Löllmann et al. [18]. Multichan-
nel utterance input data is concatenated into a long vector,
and as recommended by Löllmann et al., noise reduction is
performed beforehand. We use Loizou’s implementation [20]
of Ephraim and Malah’s LSA [16] for this pre-enhancement.
Figure 2 shows histograms of the T60 estimation performance
using this approach.

For multichannel data, we estimate the direction of arrival
(DOA) by cross-correlating oversampled data between chan-
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Fig. 2: Histograms of estimated T60 time measured on Sim-
Data evaluation dataset (these results were not used to tune
the algorithm). For each condition, left plot is for 1-channel
data, center plot is for 2-channel data, and right plot is for
8-channel data. These plots show that T60 estimation [18]
precision generally improved with increasing amounts of data
(i.e., with more channels), although for some conditions T60
estimates were inaccurate. Dotted lines indicate approximate
T60 times given by REVERB organizers [5].

nels. That is, we compute a Nch-length vector of time delays
d with d1 = 0 and di, i=2,...,Nch given by

di = argmax
k

r1i[k]

Ufs
, (22)

where r1i[k] =
∑
n x1[n]xi[n − k], U is the oversampling

factor, and c = 340 meters per second, the approximate speed
of sound in air.

Given a time delay vector d, the DOA estimate is given
by the solution to Pâ = 1

cd, where â is a 3 × 1 unit vec-
tor representing the estimated DOA of the speech signal and
P is a Nch × 3 matrix containing the Cartesian (x, y, z) co-
ordinates of the array elements. For example, for an eight-
element uniform circular array, Pi1 = xi = r cos(iπ/4),
Pi2 = yi = r sin(iπ/4), and Pi3 = zi = 0 for i = 0, 1, ..., 7,
where r is the array radius.

For the 8-channel case, the estimated DOA is used to form
the steering vector vH(f) for a frequency-domain MVDR
beamformer applied to the multichannel signal. The weights
wH(d, f) for the MVDR are [21, (6.14-15)]

wH(d, f) =
vH(f)S−1

yy (d, f)

vH(d, f)S−1
yy (d, f)v(d, f)

, (23)

where Syy(d, f) is the spatial covariance matrix at frequency
f and frame d estimated using N snapshots Y (d − n, f) for
−N/2 ≤ n < N/2 and v is given by

v(f) = exp

(
j

2πf

c
Pâ

)
. (24)

The MVDR uses a 512-sample long Hamming window with
25% overlap, a 512-point FFT, and N = 24 snapshots for
spatial covariance estimates. For 2-channel data, we use a
delay-and-sum beamformer to enhance the signal with the
delay given by the DOA estimate. Single-channel data is en-
hanced directly by the single-channel MMSE-LSA algorithm.
A block diagram of these three cases is shown in figure 3.

MVDR
MMSE-LSA

STFT or STFChT
y1:8[n] ŝ[n]

MMSE-LSA
STFT or STFChTDSB

y1:2[n] ŝ[n]

MMSE-LSA
STFT or STFChT

y1[n] ŝ[n]

Fig. 3: Block diagrams of processing for 8-channel data using
a minimum variance distortionless response (MVDR) beam-
former (top), 2-channel data using a delay-and-sum beam-
former (DSB, middle), and 1-channel data (bottom).

We tried three analysis/synthesis domains for the MMSE-
LSA enhancement algorithm: the STFT with a short window,
the STFT with a long window, and the STFChT. The STFT
with a short window uses 512-sample long (T = 32ms)
Hamming windows, a frame hop of 128 samples, and an
FFT length of 512. Short-window STFT processing is
chosen to match conventional speech processing window
lengths. The STFT with a long window uses 2048-sample
long (T = 128ms) Hamming windows, a frame hop of 128
samples, and an FFT length of 3262. Long-window STFT
processing is intended to match the parameters of STFChT
processing for a direct comparison. STFChT processing uses
an analysis duration of 2048 samples, a Hamming analysis
window, a frame hop of 128 samples, an FFT length of 3262,
oversampling factor of 8, and a set of possible analysis chirp
rates A consisting of 21 equally spaced αs from -4 to 4.

The forward STFChT, given by (17), proceeds frame-by-
frame, estimating the optimal analysis chirp rate α̂d using
(21), oversampling in time, warping, applying an analysis
window, and taking the FFT. Then MMSE-LSA weights are
estimated frame-by-frame and applied in the STFChT do-
main, and the enhanced speech signal is reconstructed using
the inverse STFChT.

For all methods, noise estimation is performed with a
decision-directed method and simple online updating of
the noise variance. Voice activity detection to determine
if a frame is noise-only or speech-plus-noise is done using
Loizou’s method, which compares the following quantity to
a threshold ηthresh:

η(d) =
∑
k

ln γ(d, k)
ξ(d, k)

1 + ξ(d, k)
− ln(1 + ξ(d, k)). (25)

If η(d) < ηthresh, the frame is determined to be noise-only
and the noise variance is updated as λv(d, k) = µvλv(d −
1, k)+(1−µv)|Y (d, k)|2, with µv = 0.98 and ηthresh = 0.15.

For our implementation of Habets’s joint dereverberation
and noise reduction algorithm, we used Loizou’s implementa-
tion [20] of Ephraim and Malah’s LSA logmmse MATLAB
implementation as a foundation. The forward STFChT code
was written by Cancela et al. [4]. We wrote our own MAT-
LAB implementation of the inverse STFChT.

Computation times for processing REVERB evaluation
data are shown in figure 7. We measured reference wall clock
times of 265.43s and 39.62s, respectively, for SimData and
RealData. For 8-channel data, the MVDR and the STFChT
require the most computation. For 1-channel and 2-channel
data, the STFChT requires the most computation. For the
STFChT, much of the computation is used to compute the
GLogS for estimation of the analysis chirp rate α̂d (21) for
each frame. Note that this computation could be easily paral-
lelized in hardware.
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Fig. 4: PESQ and SRMR results for SimData evaluation set. Upper plots are near distance condition, lower plots are far distance
condition. Left plots are PESQ, right plots are SRMR.
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Fig. 5: Spectrogram comparisons for one 8-channel far-
distance utterance, c3bc020q, from SimData evaluation set.

6. RESULTS AND DISCUSSION

Our results on REVERB evaluation data are shown in fig-
ures 4, 6, and 7. For the challenge, we submitted results us-
ing STFChT-based processing. We choose to display PESQ
(Perceptual Evaluation of Speech Quality) [22] and SRMR
(source-to-reverberation modulation energy ratio) [23] more
prominently because the former is the ITU-T standard for
voice quality testing [24] and the latter is both a measure of
dereverberation and the only non-intrusive measure that can
be run on RealData (for which the clean speech is not avail-
able).

For SimData, STFChT-based enhancement always per-
forms better in terms of PESQ than STFT-based enhancement
using either a short (512-sample) window or a long (2048-
sample) window, for the 8-, 2-, and 1-channel cases (except
for 8-channel, far-distance data in room 3). Informal listening
tests revealed an oversuppression of speech and some musical
noise artifacts in STFT processing, while STFChT process-
ing did not exhibit oversuppression or musical noise artifacts.
The oversuppression of direct-path speech by STFT process-
ing can be seen in the spectrogram comparisons shown in fig-
ure 5. In terms of SRMR, STFChT processing yields equiva-
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Fig. 6: SRMR results for RealData evaluation set.

lent or slightly worse SRMR scores than long-window STFT
processing for the 8-, 2-, and 1-channel cases (except for 8-
channel, near-distance data, where STFChT processing does
slightly better). One issue with these SRMR comparisons,
however, is that the variance of the SRMR scores is quite high.
Thus, for SimData, STFChT processing achieves better per-
ceptual audio quality while still achieving almost equivalent
dereverberation compared to STFT processing.

For RealData, we achieved SRMR improvements of over
3, as shown in figure 6. Short-window STFT processing
achieved higher scores than STFChT processing (especially
for 1- and 2-channel data), but informal listening tests re-
vealed an oversuppression of speech and some musical noise
artifacts in STFT processing, while little oversuppression
and fewer artifacts were perceived in STFChT processing.
Informal listening tests also indicated that the STFChT pro-
cessing suppresses reverberation slightly less as compared to
STFT processing, which concurs with lower SRMR scores for
STFChT processing. Thus, though STFT processing achieves
better dereverberation on RealData, better dereverberation
performance seems to come at the cost of oversuppression of
direct-path speech and addition of artifacts. STFChT process-
ing, on the other hand, achieves slightly less dereverberation
on RealData, but the enhanced speech does not seem to suffer
from oversuppression or artifacts.

7. CONCLUSION AND FUTURE WORK

In this paper we combined an optimal MMSE log-spectral
amplitude estimator for joint dereverberation and noise re-
duction with a recently-developed adaptive time-frequency
transform that is coherent with speech signals over longer du-
rations. Our approach yielded improved results on the RE-
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SimData summary
Ch. Method Comp. Time (s) Mean CD Median

CD SRMR Mean
LLR

Median
LLR

Mean
FWSegSNR

Median
FWSegSNR PESQ

Orig — 3.97 3.68 3.68 0.57 0.51 3.62 5.39 1.48
8 STFT 512/2048 7447.86 / 7622.38 3.56 / 3.18 3.23 / 2.83 4.77 / 4.56 0.61 / 0.43 0.50 / 0.38 8.06 / 6.79 8.47 / 9.31 1.83 / 1.94
8 STFChT 17132.60 2.97 2.49 4.82 0.43 0.37 9.21 10.63 2.10
2 STFT 512/2048 1955.89 / 2022.04 3.80 / 3.57 3.42 / 3.22 4.86 / 4.47 0.65 / 0.49 0.55 / 0.44 7.26 / 5.46 7.93 / 7.86 1.60 / 1.66
2 STFChT 8248.49 3.33 2.83 4.75 0.51 0.45 7.68 9.19 1.77
1 STFT 512/2048 1003.54 / 1074.93 3.87 / 3.84 3.48 / 3.51 4.79 / 4.28 0.68 / 0.54 0.58 / 0.47 6.72 / 4.65 7.62 / 6.71 1.53 / 1.59
1 STFChT 7454.59 3.57 3.07 4.55 0.57 0.49 7.07 8.60 1.69

SimData, far distance, room 1
Orig — 2.67 2.38 4.58 0.38 0.35 6.68 9.24 1.61

8 STFT 512/2048 7337.43 / 7477.34 3.16 / 2.28 2.88 / 2.05 5.05 / 4.82 0.52 / 0.37 0.43 / 0.34 8.50 / 9.16 8.73 / 10.57 1.90 / 1.87
8 STFChT 16730.48 2.47 2.04 5.01 0.34 0.30 10.16 11.26 2.11
2 STFT 512/2048 1872.86 / 1936.2 3.32 / 2.41 2.98 / 2.14 5.47 / 5.10 0.50 / 0.38 0.41 / 0.35 8.06 / 8.30 8.48 / 10.14 1.68 / 1.75
2 STFChT 7175.92 2.66 2.18 5.44 0.35 0.31 8.99 10.14 1.87
1 STFT 512/2048 975.37 / 1057.11 3.34 / 2.60 3.00 / 2.32 5.42 / 5.00 0.51 / 0.37 0.42 / 0.34 8.09 / 7.82 8.59 / 9.97 1.63 / 1.71
1 STFChT 6378.58 2.83 2.34 5.30 0.37 0.32 8.86 10.12 1.81

SimData, near distance, room 1
Orig — 1.99 1.68 4.50 0.35 0.33 8.12 10.72 2.14

8 STFT 512/2048 7230.86 / 7500.12 2.92 / 1.97 2.71 / 1.74 4.78 / 4.62 0.46 / 0.34 0.38 / 0.32 8.72 / 9.73 8.83 / 10.56 2.47 / 2.41
8 STFChT 16807.41 2.12 1.68 4.80 0.28 0.25 10.83 11.62 2.89
2 STFT 512/2048 1842.15 / 1904.45 2.90 / 1.90 2.64 / 1.64 5.05 / 4.81 0.44 / 0.36 0.37 / 0.34 8.83 / 9.36 9.08 / 10.83 2.27 / 2.28
2 STFChT 7104.62 2.18 1.72 5.18 0.30 0.27 10.23 11.13 2.55
1 STFT 512/2048 954.31 / 1032.19 3.02 / 2.11 2.75 / 1.83 5.05 / 4.79 0.48 / 0.36 0.41 / 0.34 8.66 / 8.83 8.88 / 10.66 2.08 / 2.25
1 STFChT 6389.66 2.29 1.84 5.18 0.31 0.28 10.07 11.01 2.50

SimData, far distance, room 2
Orig — 5.21 5.04 2.97 0.75 0.63 1.04 1.77 1.19

8 STFT 512/2048 7824.78 / 7954.58 4.31 / 4.25 3.85 / 3.87 4.72 / 4.52 0.72 / 0.47 0.60 / 0.40 7.43 / 4.98 8.29 / 8.28 1.37 / 1.56
8 STFChT 17652.06 3.82 3.29 4.85 0.58 0.49 7.84 9.71 1.56
2 STFT 512/2048 2064.93 / 2134.76 4.59 / 4.75 4.05 / 4.46 4.61 / 4.17 0.78 / 0.58 0.64 / 0.50 6.24 / 3.33 7.49 / 5.72 1.27 / 1.32
2 STFChT 9119.6 4.29 3.76 4.35 0.71 0.61 5.93 7.74 1.34
1 STFT 512/2048 1020.71 / 1075.23 4.59 / 4.98 4.08 / 4.75 4.46 / 3.80 0.82 / 0.68 0.69 / 0.57 5.26 / 2.20 6.70 / 3.71 1.26 / 1.26
1 STFChT 8177.94 4.53 4.01 3.93 0.79 0.68 5.01 6.68 1.28

SimData, near distance, room 2
Orig — 4.63 4.24 3.74 0.49 0.40 3.35 5.52 1.40

8 STFT 512/2048 7545.94 / 7782.53 3.31 / 3.33 3.03 / 2.84 4.67 / 4.43 0.51 / 0.28 0.41 / 0.20 9.82 / 7.68 9.93 / 11.63 1.99 / 2.20
8 STFChT 18103.93 2.78 2.32 4.78 0.33 0.26 11.54 13.18 2.37
2 STFT 512/2048 1944.39 / 2010.15 3.69 / 4.07 3.41 / 3.55 4.85 / 4.45 0.60 / 0.36 0.51 / 0.28 8.69 / 5.80 8.94 / 9.53 1.59 / 1.72
2 STFChT 9007.05 3.30 2.84 4.84 0.46 0.38 9.42 11.26 1.84
1 STFT 512/2048 988.66 / 1052.96 3.95 / 4.48 3.66 / 4.00 4.82 / 4.30 0.67 / 0.44 0.57 / 0.35 7.59 / 4.55 8.23 / 7.57 1.48 / 1.57
1 STFChT 8267.96 3.64 3.17 4.70 0.54 0.45 8.25 10.08 1.70

SimData, far distance, room 3
Orig — 4.95 4.72 2.72 0.83 0.76 0.24 0.88 1.16

8 STFT 512/2048 7526.24 / 7576.84 4.29 / 4.06 3.83 / 3.71 4.49 / 4.28 0.80 / 0.62 0.68 / 0.57 5.94 / 3.32 6.99 / 5.83 1.33 / 1.48
8 STFChT 16566.95 3.82 3.27 4.45 0.63 0.55 5.96 7.72 1.47
2 STFT 512/2048 2037.28 / 2106.18 4.56 / 4.45 4.03 / 4.14 4.39 / 3.92 0.85 / 0.71 0.74 / 0.66 4.68 / 2.00 6.10 / 4.02 1.22 / 1.27
2 STFChT 8555.67 4.23 3.67 3.96 0.73 0.66 4.33 6.02 1.27
1 STFT 512/2048 1055.52 / 1117.79 4.49 / 4.68 3.96 / 4.40 4.30 / 3.60 0.86 / 0.76 0.75 / 0.69 4.19 / 1.27 5.84 / 2.62 1.22 / 1.23
1 STFChT 7759.75 4.47 3.92 3.62 0.79 0.70 3.74 5.45 1.23

SimData, near distance, room 3
Orig — 4.37 4.03 3.56 0.65 0.58 2.27 4.20 1.37

8 STFT 512/2048 7221.89 / 7442.87 3.39 / 3.18 3.10 / 2.78 4.92 / 4.69 0.65 / 0.47 0.53 / 0.42 7.96 / 5.85 8.07 / 9.02 1.93 / 2.10
8 STFChT 16934.76 2.79 2.33 5.05 0.43 0.36 8.92 10.28 2.23
2 STFT 512/2048 1973.75 / 2040.5 3.72 / 3.82 3.39 / 3.41 4.78 / 4.39 0.72 / 0.56 0.62 / 0.49 7.07 / 3.98 7.50 / 6.90 1.58 / 1.64
2 STFChT 8528.08 3.32 2.82 4.75 0.53 0.46 7.18 8.83 1.73
1 STFT 512/2048 1026.68 / 1114.32 3.80 / 4.18 3.44 / 3.79 4.70 / 4.21 0.74 / 0.61 0.64 / 0.53 6.57 / 3.21 7.51 / 5.76 1.51 / 1.52
1 STFChT 7753.63 3.64 3.12 4.55 0.60 0.52 6.49 8.24 1.60

RealData summary
Ch. Method Comp. Time (s) SRMR

Orig — 3.18
8 STFT 512/2048 3080.52 / 3152.88 6.90 / 5.31
8 STFChT 5236.74 6.33
2 STFT 512/2048 852.84 / 934.18 6.29 / 4.57
2 STFChT 3036.49 5.24
1 STFT 512/2048 610.26 / 682.97 5.80 / 4.21
1 STFChT 2753.87 4.85

RealData, far distance
Ch. Method Comp. Time (s) SRMR

Orig — 3.19
8 STFT 512/2048 2908.92 / 2977.25 6.99 / 5.56
8 STFChT 4962.74 6.52
2 STFT 512/2048 810.37 / 943.14 6.25 / 4.63
2 STFChT 2922.66 5.25
1 STFT 512/2048 754.06 / 870.11 5.73 / 4.24
1 STFChT 2624.72 4.82

RealData, near distance
Ch. Method Comp. Time (s) SRMR

Orig — 3.18
8 STFT 512/2048 3252.12 / 3328.51 6.81 / 5.05
8 STFChT 5510.74 6.13
2 STFT 512/2048 895.3 / 925.23 6.33 / 4.51
2 STFChT 3150.32 5.22
1 STFT 512/2048 466.47 / 495.82 5.87 / 4.17
1 STFChT 2883.02 4.87

Fig. 7: Results for SimData and RealData evaluation sets.
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VERB challenge dataset versus standard STFT processing.
Processing in the STFChT domain resulted in less reverbera-
tion at the output without introducing artifacts, which concurs
with substantial increase in the PESQ scores, the ITU-T stan-
dard for voice quality. We also provided insight as to why en-
hancement performance improves using the STFChT domain.
The improvement gained by STFChT-based processing is an
interesting result, and warrants further investigation. Further
exploration may be fruitful, as combination of the fan-chirp
or other coherent transforms with other methods for derever-
beration and/or noise reduction may yield improved results.
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