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ABSTRACT

Reverberant noise is present in most practical applications
of Automatic Speech Recognition (ASR) that do not rely on
close-talk microphones. Unlike additive noise, there is lim-
ited progress in reducing the effect of reverberant noise in
speech. For our REverberant Voice Enhancement and Recog-
nition Benchmark (REVERB) challenge submission, we pro-
pose to use of a beamforming system combining the Gener-
alized Sidelobe Canceller (GSC) with Phase-error based fil-
tering (PBF). Our system is calibrated to make use of the
baseline HMM recognizer with CMLLR and multi-condition
training as it is the most practical setup for realistic applica-
tions.From the results we obtained, it appears that the main
contribution to reverberant noise reduction comes from the
combination of multiple audio streams while the adaptive fil-
tering of GSC provides a slight improvement on top of this
combination. For the speech enhancement task, we simply
apply a previous noise reduction method, which is based on
generalized gamma distribution modeling of speech spectral
magnitude, on the output of developed PBF-GSC beamform-

ing.
Index Terms— ASR, reverberant, beamforming, GSC,
HMM, SGMM, DNN

1. INTRODUCTION

The REVERB [1] challenge is designed to compare the per-
formance of Automatic Speech Recognition (ASR) systems
in reverberant noise on a common database and evaluation
metric. Reverberant noise is highly correlated with the target
signal and is difficult to isolate compared to additive noise.
In realistic applications of ASR systems where the speaker is
not using a close-talk microphone, reverberant noise will al-
ways be present. Our submission for this challenge is focused
mainly on addressing this problem: the reduction of reverber-
ant noise in realistic environments.

We choose to concentrate on the multi-condition accous-
tic models instead of the clean models as it shows a significant
improvement in Word Error Rate (WER) over the clean mod-
els in all of the noisy test conditions. It is shown in the chal-
lenge that the multi-condition training data can be easily gen-

erated from the clean data with arbitrary impulse responses
and additive noise thus creating such data for real systems
should not be an issue. Finally, our system is tuned to opti-
mize the ASR performance on the RealData set as it offers the
greatest room for improvement and is closest to realistic test
environments.

Testing with the RealData development set, we found that
beamforming [2] the 8-channel audio data into a single chan-
nel gives the best ASR performance. Our final system uses
Phase-error based filtering (PBF) and Generalized Sidelobe
Cancellation (GSC) in a combined PBF-GSC beamformer on
the 8-channel audio to generate a single enhanced channel to
be passed to the recognizer. We present our results for the
proposed PBF-GSC front-end on the baseline MFCC-HMM
recognizer and show that it is equally effective on the more
advanced Subspace Gaussian Mixture Model (SGMM) and
Deep Neural Network (DNN) recognizers.

For the speech enhancement task, we simply apply a pre-
vious noise reduction method, which is based on general-
ized gamma distribution modeling of speech spectral magni-
tude [3], on the output of developed PBF-GSC beamforming.

2. FRONT-END SELECTION

We tested conventional noise reduction methods such as
RASTA filtering [4] with Perceptual Linear Predictive (PLP)
features, ETSI Advanced Front End [5] using Mel-Frequency
Cepstral Coefficients (MFCC) with Wiener filtering and noise
robust Power-Normalized Cepstral Coefficients (PNCC) [6]
on the RealData development set with both clean and multi-
conditional models. All three of the above methods show
significant improvements over the baseline MFCC system for
clean training. However, when multi-condition training is
used, the noise-robust systems actually fare worse than the
baseline system as the great gains shown in clean training
are significantly reduced in multi-condition training. Based
on these findings, we decided to rely on the baseline MFCC
for our feature front-end and seek other avenues for noise
reduction.

With eight channels of audio data available, beamforming
can be applied to reduce the effect of reverberation on speech.
Firstly, Generalized Cross Correlation with Phase Transform



(GCC-PHAT) [7] is used to estimate the time difference of
arrival (TDOA) for the 8 audio channels. The TDOA is used
to align the individual channels in time before beamforming
commences:

2.1. Generalized Sidelobe Canceller (GSC)

The GSC [8] algorithm is designed to steer the beamformer
output to a fixed direction of interest by reducing the contri-
bution of adjacent signals or sidelobes. We define this direc-
tion as the channel with the minimum TDOA z,. It is im-
plemented in two-steps: fixed beamforming where the indi-
vidual channels are multiplied by fixed weights and summed
to form a single reference signal, and adaptive filtering where
the sidelobes are estimated and adaptively filtered from the
reference signal.

The simplest implementation of the fixed beamformer
(FBF) is simply to weigh each of the n channels z; equally to
obtain the reference signal y:
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A blocking matrix is constructed of n — 1 linearly inde-
pendent rows that sum to zero to estimate the sidelobes to be
cancelled. We define the blocking matrix output b; to be the
difference of each other channel 7 with the reference channel
Ty
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An adaptive Least Mean Squares (LMS) filter is used to
iteratively filter the reference signal ¥, at each time instant
t by minimizing the n — 1 blocking matrix outputs b;. The
adaptive LMS filter is an M order Finite Impulse Response
(FIR) filter that minimizes the total power of the beamformer
p(t) using stochastic gradient descent.
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In the above equations, the channel index ¢ runs from [1, n],
excluding the reference channel r that has the minimum
TDOA. /3 and p are hyper-parameters governing the updating
of the adaptive filter. Based on empirical testing with the
RealData development set, the values 5 = 0.99 and px = 0.02
are found to give the best performance.

2.2. Phase-error based filtering (PBF)

The multiple-microphone PBF [9] uses the phase error be-
tween microphone channels to maximize the signal-to-noise
ratio (SNR) for each time-frequency block and combines
them into a single enhanced signal. A sliding Short Time
Fourier Transform (STFT) is used to transform windows of
the temporal signal into the time-frequency domain for phase
estimation.

The phase error 0;; for each window ¢t is defined as the
difference between the phase angles of channels X; and X;:

0;(t) = £X;(t) — £X,(¢), 1# ] (©6)

For each of the n channels, the n — 1 values of 6;; are com-
puted and multiplied into a single mask M;:
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v and k are hyperparameters that control the aggressiveness
of the masking. Based on empirical testing with the RealData
development set, the values v = 0.001 and k¥ = 0.3n were
chosen.

Each of the n masks M; is applied to the corresponding
STFT X; and summed to give a filtered STFT X ;:

Xy = iMiXi (3
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Finally, the Inverse Fast Fourier Transform (IFFT) is applied
to X to transform it back into a temporal signal x ; which is
the output of the PBF.

2.3. Proposed PBF-GSC system

The FBF in the GSC algorithm is used to obtain a cleaner
reference signal ¥ for the subsequent adaptive filtering. We
propose to replace y; with the PBF output x ¢ for a combined
PBF-GSC system. As stated in [8], there are many possible
ways to choose the weights for the FBF and the PBF can be
seen as another solution to this problem. Applying the adap-
tive LMS filter on the PBF output should further reduce the
noise present thus combining these two systems should pro-
duce better results than using them independently.

3. BACK-END SELECTION

3.1. Hidden Markov Model (HMM)

We use the provided baseline recognition system with Con-
strained Maximum Likelihood Linear Regression (CMLLR)
adaption for our HMM system.



3.2. Subspace Gaussian Mixture Model (SGMM)

Here we briefly introduce the SGMM approach, which is an
improvement over the conventional HMM-GMM framework
[10]. The idea of SGMM is that while the HMM states share
a common structure, the means and mixture weights of each
state are allowed to vary within a subspace of the full param-
eter space. This is controlled by a global mapping from a
vector space to the space of shared GMM parameters. The
shared GMM is commonly referred to as a universal back-
ground model (UBM) that covers the total variability of the
acoustic vector space.

Following the notation used in [10], the most basic form
of the model, without speaker adaptation or sub-states can be
denoted as follows. We use the index 1 < ¢ < [ for the
Gaussians in the shared GMM, and the index 1 < 5 < J for
the clustered phonetic states. For each state j, the probability
model p(z|j) is:
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where M; € RP*S are the GMM mean-projection matri-
ces, w; € R are the weight-projection vectors, v; € RS
are the state-specific vectors that control the mapping, and
Y, € RP*D are the variances. D is the dimension of the
input MFCC features, while the “subspace” of dimension S
is a subspace of the total parameter space of the means of
the GMM. In our experiments we set S = 40, I = 700 and
J = 9000. An extension to the above model enables the use
of sub-states, which are similar to using several mixtures to
model each state in traditional HMM-GMM. The phonetic
states are gradually split during the training iterations to pro-
duce 30000 sub-states in total for the model.

3.3. Deep Neural Network (DNN)

For comparison with the previous GMM-based systems a
DNN-HMM hybrid system is also trained. The purpose of
the DNN is provide posterior probability estimates for the
HMM states through discriminative training. Using the nota-
tion from [11], for an observation o, corresponding to time
t in utterance u, the output y,+(s) of the DNN for the HMM
state s is obtained using the softmax activation function:
Yut(8) £ P(s|out) =

exp(ayi(s))
. (12)

2o exp(aur(s"))

where a,(s) is the activation at the output layer correspond-
ing to state s. In our case, the network is trained to optimise
the cross-entropy objective function using the standard error

back-propagation procedure, which is done through stochas-
tic gradient descent (SGD). As found in previous work [11], it
is common to use the negative log posterior as the objective,
since this is also the expected cross-entropy between the dis-
tribution represented by the reference labels and the predicted
distribution y/(s). The objective is therefore written as:
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where s,,; is the reference state label at time ¢ for utterance wu.
Finally, the necessary gradient is:
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where J,.,,, is the Kronecker delta function. In our experi-
ments we use a deep network with 4 hidden layers, each with
1200 hidden nodes. The input layer is composed from a con-
text window of 9 MFCC frames, while the output of the net-
work are the 2000 triphone tied-states that are force-aligned
using the conventional HMM-GMM system.

4. EXPERIMENT SETUP

The data used in the REVERB challenge [1] is based on the
noisy Multi-Channel Wall Street Journal Audio-Visual (MC-
WSJ-AV) [12] corpus, which is in turn, developed from the
Wall Street Journal text corpus [13]. The baseline HMM rec-
ognizer is developed using HTK [14] and the scripts provided
for the challenge. The SGMM and DNN recognizers are de-
veloped using Kaldi [15].

Our multi-condition accoustic models are trained using
the provided scripts, including CMLLR adapation, without
any additional training data. The 8-channel test data is beam-
formed as described in the front-end selection into a single
channel and used for testing.

5. RESULTS AND DISCUSSION

5.1. HMM recognizer

The results shown in Table 1 summarizes the results for the
HMM recognizer using different front-ends. As the rever-
beration time of the simulated rooms increases from rooms
one to three, the Word Error Rates (WER) is shown to in-
crease. Based on this observation, it is likely that the rever-
beration time of the RealData room is higher than the 0.7s of
the large-size simulated room (Room 3). The results shown
for the fixed beamformer (FBF) refers to the simple mean of
the 8-channel audio given by Equation (1).

Of the four alternate front-ends tested, the PBF system is
the only one to outperform the baseline in all three simulated
rooms. The aggressive adaptive filtering used in the GSC al-
gorithm was calibrated to compensate for the increased noise



Beamform SimData RealData
Nearl | Farl | Near2 | Far2 | Near3 | Far3 Avg. Near Far Avg.
Baseline 16.76 | 18.35 | 20.78 | 32.75 | 24.79 | 39.96 || 25.55 || 49.92 | 47.54 || 48.73
FBFonly | 16.66 | 17.35 | 16.88 | 23.35 | 18.94 | 27.95 || 20.18 || 37.11 | 38.15 || 37.63
HTK GSConly | 17.50 | 18.65 | 17.14 | 21.93 | 18.84 | 27.71 || 20.29 || 37.66 | 37.44 | 37.55
PBFonly | 16.59 | 17.64 | 16.93 | 23.01 | 19.01 | 27.69 || 20.14 || 36.92 | 37.85 || 37.38
17.43 | 18.67 | 17.14 | 22.03 | 18.89 | 27.52 || 20.27 || 35.68 | 36.66 || 36.17
Kaldi DNN Proposed | 1317 | 12.52 | 11.00 | 13.33 | 12.63 | 17.54 || 1336 || 32.32 | 33.56 || 32.94
Kaldi SGMM 11.52 | 1144 | 9.66 | 12.56 | 11.09 | 15.25 || 11.92 || 28.68 | 30.89 || 29.79

Table 1. Comparison of baseline system, systems using only the Fixed beamformer (FBF), Phase-error based filter (PBF) and
Generalized Sidelobe Canceller (GSC), and the proposed (PBF-GSC) system on the evaluation set

present in the RealData environment. There is a mismatch
with the short (0.25s) reverberation time of the first room re-
sulting in the two systems using GSC to perform worse than
the baseline. In the noiser rooms, the GSC systems are shown
to fare better.

Individually, the FBF, GSC and PBF systems are shown
to give an error rate around 37% in the RealData environment.
The only difference between the FBF and GSC systems is the
application of the adaptive LMS filter. The net effect of the
adaptive filtering is to improve the far-condition WER at the
expense of the near-condition WER, suggesting that the adap-
tive filter is overcompensating for the far-field condition. The
average WER suggests that using the FBF alone instead of
the computation-intensive GSC algorithm is sufficient since
the adaptive filter only provides a marginal WER improve-
ment. The PBF performance is a strict improvement over the
FBF, again suggesting that beamforming in the form of Equa-
tion (1) is the main contributor to the improved performance
of the beamforming methods studied here.

Applying the adaptive LMS filter from the GSC algorithm
to the PBF output in our proposed PBF-GSC system is shown
to lower the WER further to 36%. There is an absolute WER
reduction of 1% in both near and far-field conditions in the
combined system, suggesting that the adaptive LMS filter is
more effective when a better reference signal 3¢ is provided.
This suggests that it might be possible to further refine the
system by calibrating the PBF output via its hyperparameters
~ and k to better accommodate the adaptive LMS filter.

Strictly from the viewpoint of computation efficiency, the
simple FBF of Equation (1) is probably the best solution as it
requires no calculations beyond the simple mean of the indi-
vidual channels. It is also easier to extend to different number
of audio channels. In contrast, the PBF requires computations
between each channel pair while the GSC requires an estima-
tion of each additional sidelobe.

An alternate method for improving the performance is to
increase the number of audio channels. Scaling the beam-
forming setup from 2 to 8 channels, we found that increasing
the number of channels correlates to a reduction in WER.

There is likely to be an upper bound to the possible improve-
ments derived by this method and the need for additional
hardware might not be feasible depending on the actual ap-
plication of the system.

5.2. SGMM and DNN recognizer

The results in Table 1 also compare the performance for
the proposed PBF-GSC beamforming for the baseline HTK
against the SGMM and DNN recognizers. Comparing the
SGMM and DNN results, it can be seen that the SGMM sys-
tem consistently outperformed the DNN system. In particular,
for the challenging real data, the performance of SGMM for
the near and far conditions was 28.68% and 30.89% respec-
tively. This compared well against the 32.32% and 33.56%
that was achieved by the DNN system. The reason for this
result may be caused by the relatively small amount of multi-
conditional data available for training, as specified by the
competition. This is due to the large number of parameters to
be trained in the DNN, which are difficult to optimise without
a large amount of training data.

Comparing the results between the HTK and SGMM
systems in Table 1, it can be seen that SGMM consistently
outperforms the HTK system in each condition. The im-
provement is typically around a 6% absolute improvement,
although the SGMM does particularly well in the simulated
rooms with higher reverberation time (Room 3). This should
be expected since the SGMM increases the modelling power
of the GMM, by using a large UBM to cover the acoustic
space and mapping this to a more specific subspace for each
of the HMM states.

6. SPEECH ENHANCEMENT

For the speech enhancement task, we simply apply a previous
noise reduction method [3] on the output of PBF-GSC beam-
forming, described in paragraph 2.3. The basic idea of the
method proposed in [3] is to fit the parameterized distributions



SimData RealData
Measure
Nearl | Farl | Near2 | Far2 | Near3 | Far3 || Avg. || Near | Far || Avg.
Cepst Distance | 3.30 | 3.71 | 5.01 | 5.58 | 4.76 | 5.35 | 4.62 - - -
. Loglike Ratio 0.58 | 0.64 | 0.79 | 1.00 | 1.00 | 1.12 || 0.86 - - -
Single-channel
Seg SNR 6.61 | 6.16 | 423 | 325 | 4.19 | 4.19 || 4.58 - - -
SRMR 53 572 | 626 | 537 | 5.15 | 442 | 537 || 797 | 7.65 || 7.81
Cepst Distance | 2.15 | 248 | 2.75 | 3.88 | 2.88 | 3.94 | 3.01 - - -
Loglike Ratio 026 | 031 | 039 | 057 | 048 | 0.67 || 045 - - -
8-channel
Seg SNR 11.08 | 10.1 | 6.84 | 576 | 7.35 | 453 || 7.61 - - -
SRMR 4.09 | 4.15 35 367 | 390 | 321 || 3.75 | 3.67 | 3.79 || 3.73

Table 2. Results for the speech enhancement task for both the 8-channel and single-channel scenarios using the proposed
generalized gamma distribution model of the speech spectral magnitude.

of speech and noise spectrum at each time frame and then em-
ploy the statistical estimation such as MMSE or MAP to esti-
mate the clean speech spectral magnitude before resynthesize
its waveform. Particularly, the generalized gamma distribu-
tion was proposed to model the speech spectral magnitude
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where 0% denotes the variance of speech spectrum and
(a,b,L) are distribution parameters, while the Gaussian
distribution is used to model the noise complex spectrum
distributions. For the given task, we employ a special case
of [3], with L = 2,a = 1,b = 5 and using MAP esti-
mator, which yields a closed form solution for the spectral
magnitude estimation as

p(IS)) = , (15)

1 1 10— 3
a-= + +

2(1+é) a(1+8) 4 (1+é)
3 ( + g) 7 3
where ¢ and v denotes the prior and posterior SNR estima-
tions at each time-frequency index [3].

Table 2 reports the evaluation results of proposed method
for using 8-channel and single channel, respectively. At the
multi-channel scenario, the noise reduction is applied on
PBF-GSC output while at the single channel case, only the
noisy channel number 1 was processed. Since the PESQ eval-
uation was not performed, it is hard to make any conclusion
on the results. We just note that, the SRMR measurements
could be tuned to getting very high value when changing the
modeled distribution parameter a and b but it may not results
in a better quality of the enhanced signals.

(16)

7. CONCLUSION

In this paper, we addressed the issue of reverberant noise us-
ing beamforming which combines multiple audio streams into

a single stream that is less corrupted by noise compared to its
individual components. The main objective of this study is to
search for a viable solution to reverberant speech in realistic
environments for actual ASR systems thus we have focused
on using multi-condition training and the RealData set. Our
final system combines Generalized Sidelobe Canceller (GSC)
with Phase-error based filtering (PBF) into a PBF-GSC beam-
former that operates on 8-channels of audio to generate a sin-
gle enhanced signal. Although the PBF-GSC system is cal-
ibrated based on the results from the baseline MFCC-HMM
recognizer built using HTK, it is found to perform well on
the more advanced SGMM and DNN recognizers developed
using Kaldi.
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