USE OF MULTIPLE FRONT-ENDS AND I-VECTOR-BASED SPEAKER ADAPTATION FOR ROBUST SPEECH RECOGNITION

Summary

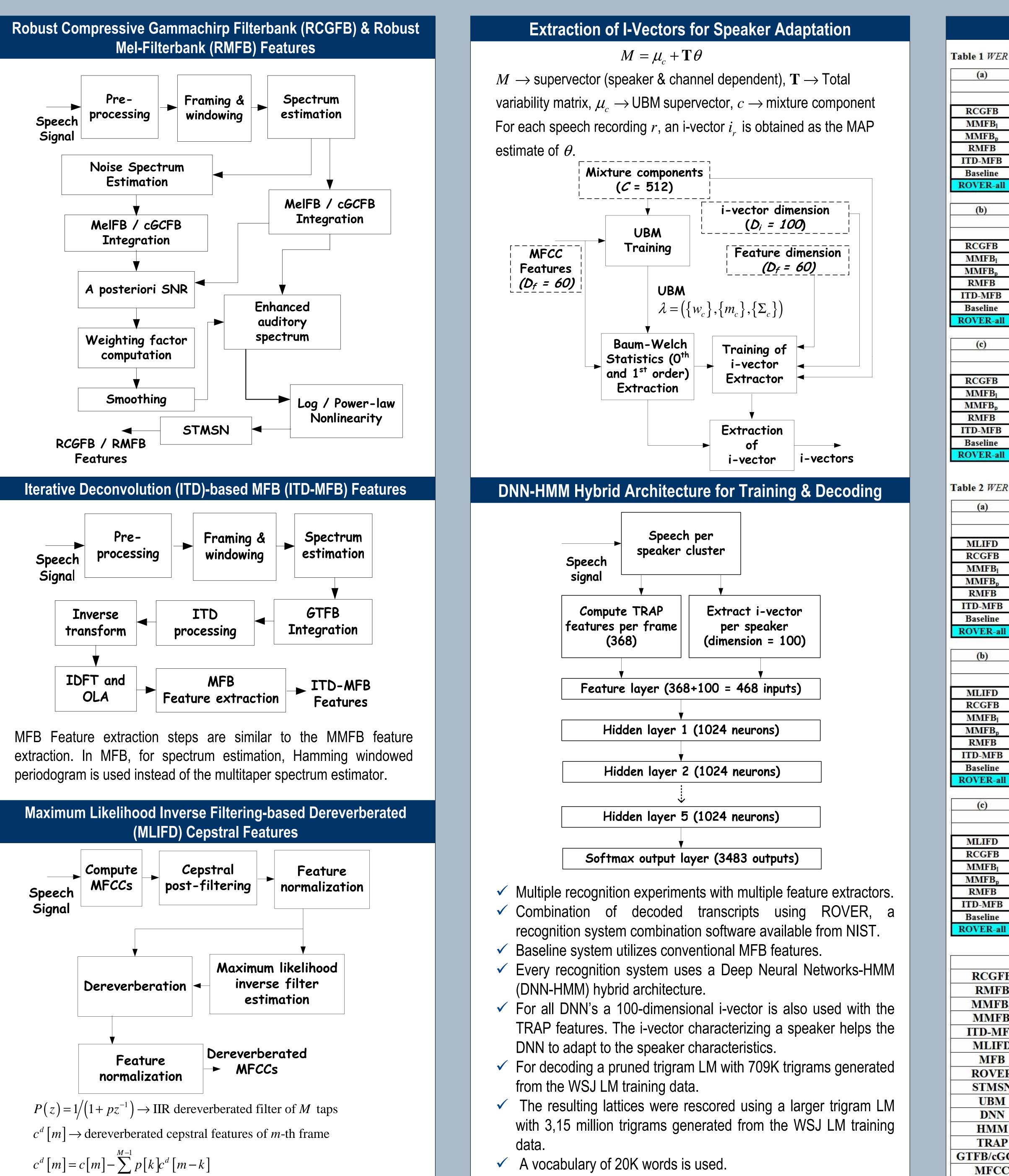
✓ Although state-of-the-art speech recognition systems perform well in controlled environments they work poorly in realistic acoustical conditions in reverberant environments.

 \checkmark We use multiple front-ends - based recognition systems with multi-condition training data and combine their results using ROVER (Recognizer Output Voting Error Reduction).

 \checkmark For 2- and 8- channel tasks, to get benefit from more than one channel, we utilize ROVER instead of the multi-microphone signal processing method.

✓ As in previous work we also apply i-vector-based speaker adaptation which was found effective.

✓ Speech recognition experiments using the DNN-HMM hybrid architecture are conducted on the REVERB challenge 2014 corpora using the Kaldi recognizer.


✓ For the 2-channel task (using full batch processing) we obtained an average word error rate (WER) of 9.0% and 23.4% on the SimData and RealData respectively. Whereas for 8-channel task on the SimData and RealData the average WERs found were 8.9% and 21.7%, respectively.

Front-Ends

The following front-ends (or feature extractors) were considered in this REVERB Challenge 2014 task.

Multitaper Mel-Filterbank (MMFB) Features Tapers $w_p(j)$ No. of tapers (M) Weights *N(p)* STFT & Prespectrum Framing | processing | estimation Speech signal Mel-filter bank integration Power or Log nonlinearity Lag size **MMFB** Features Append delta Feature & double normalization delta s(n) w_p(n), p = 1 Multi-taper Spectrum $\left| \mathbf{DFT}(\cdot) \right|^2 \rightarrow (X)$ $\lambda(\mathbf{p})|\mathbf{p}=2|$ w_p(n), p = 2 $\mathbf{DFT}(\cdot)|^2 \longrightarrow \mathbf{X}$ N-1 $\left|\mathbf{DFT}(\cdot)\right|^{2}$ w (n), p = 6 $\lambda(\mathbf{p})|\mathbf{p}=\mathbf{6}$ $\operatorname{var}\left(\hat{S}_{MT}\left(m,k\right)\right) \approx \frac{1}{M}\operatorname{var}\left(\hat{S}_{d}\left(m,k\right)\right)$

Md Jahangir Alam^{1,2}, Vishwa Gupta¹, Patrick Kenny¹, Pierre Dumouchel ² ¹ CRIM, Montreal, Canada, ² École de technologie supérieure, Montréal, Canada

- \checkmark A vocabulary of 20K words is used.

Le génie pour l'industrie

Experimental Results on the Eval data

Table 1 WER obtained using utterance-based batch processing for (a) 1-, (b) 2-, & (c) 8-channel tasks

		1.00			<u>.</u>	1.170.0	10 N - 1288	- 12 - 13 - 13	0.32	
	8		ž.	SimDat	a		2		RealData	l
	Room 1		Room 2		Roo	Room 3		Room 1		
	Near	Far	Near	Far	Near	Far	Avg.	Near	Far	Avg.
B	8.2	9.4	9.8	15	10.8	16.6	11.6	30.4	31.5	30.9
1	8.3	9.3	9.9	15.7	10.6	17.6	11.9	31.6	30.9	31.2
р	8.5	9.8	11.1	17.2	11.8	19.2	12.9	30.2	31.9	31
8 <u> </u>	8.4	9.1	9.7	15	10.8	17	11.6	31.8	31.3	31.5
B	7.6	8.8	10.4	14.5	9.8	16	11.1	31.9	33	32.4
e	7.6	8.9	11.5	18.1	11.2	18.8	12.6	41	38	39.4
all	7.1	8.1	8.9	12.9	9.2	13.8	10	27.2	26.9	27.1
				SimDat	a				RealData	
	Roo	m 1	Room 2		Root	Room 3		Room 1		
	Near	Far	Near	Far	Near	Far	Avg.	Near	Far	Avg.
3	8.4	9.5	10.1	15.2	11.1	17.1	11.9	31.4	32.4	31.9
1	8.5	9.3	10.1	15.9	11.3	17.9	12.2	32.8	31.2	32
р	8.9	10	11	18.1	12.5	20.3	13.5	31.8	32.9	32.3
	8.4	9.1	10	15.4	10.8	17.3	11.9	32.6	31	31.8
B	7.8	9	10.5	15.1	10.4	16.1	11.5	33	32.6	32.8
e	7.8	9.2	11.6	18.3	11.7	19.3	13	42.4	38.5	40.4
all	7	7.8	8.4	12.1	9	13.2	9.6	25.5	25.7	25.6
-										

	4		RealData							
	Room 1		Room 2		Room 3		8	Room 1		
	Near	Far	Near	Far	Near	Far	Avg.	Near	Far	Avg.
	8.1	9	9.1	14	10.3	15.3	11	27.9	28.7	28.3
	8.1	8.7	9.3	14.3	10.1	15.8	11.1	28.4	27	27.7
	8.4	9.2	10.2	16.1	11.4	18	12.2	27.5	28.7	28.1
	8.1	8.7	9.1	13.6	10	14.8	10.7	29.4	27.7	28.5
B	7.2	8.1	9.7	13.1	9.5	14.8	10.4	29.8	30.1	30
_	7.6	8.4	10.6	17	10.6	17.9	12	37.8	36.8	37.3
all	6.7	7.3	8.3	11.6	8.6	12.6	9.1	23.8	24.1	24

Table 2 WER obtained using full batch processing for (a) 1-, (b) 2-, & (c) 8-channel tasks.

	15		RealData							
	Room 1		Room 2		Room 3		а. 7 ж аласына	Room 1		
	Near	Far	Near	Far	Near	Far	Avg.	Near	Far	Avg.
)	8	8.8	10.9	15.9	11.1	17.6	12	27	28	27.5
B	8.2	9.4	9.8	15	10.8	16.6	11.6	30.4	31.5	30.9
B1	8.7	9.9	10.3	17.2	11.3	18.7	12.6	28.7	28.7	28.6
p	8.5	9.8	11.1	17.2	11.8	19.2	12.9	30.2	31.9	31
1	8.4	9.1	9.7	15	10.8	17	11.6	31.8	31.3	31.5
В	7.6	8.8	10.4	14.5	9.8	16	11.1	31.9	33	32.4
e	7.6	8.9	11.5	18.1	11.2	18.8	12.6	41	38	39.5
all	6.7	7.3	8.4	11.8	8.7	12.7	9.3	23.8	24.8	24.3

			RealData							
	Room 1		Room 2		Room 3			Room 1		14
	Near	Far	Near	Far	Near	Far	Avg.	Near	Far	Avg.
)	8.2	9	11.1	16.5	11.5	18.4	12.5	27.3	27.5	27.4
B	8.4	9.5	10.1	15.2	11.1	17.1	11.9	31.4	32.4	31.9
b 1	8.8	10.4	10.5	17.9	11.8	19.5	13.2	29.5	28.8	29.1
p	8.9	10	11	18.1	12.5	20.3	13.5	31.8	32.9	32.3
5	8.4	9.1	10	15.4	10.8	17.3	11.9	32.6	31	31.8
B	7.8	9	10.5	15.1	10.4	16.1	11.5	33	32.6	31
e	7.8	9.2	11.6	18.3	11.7	19.3	13	42.4	33	40.4
all	6.6	7.4	8.1	11.2	8.5	12.2	9	22.6	24.2	23.4

	×		RealData							
	Room 1		Room 2		Room 3		0.1 0 .000.000.000	Room 1		
	Near	Far	Near	Far	Near	Far	Avg.	Near	Far	Avg.
D	7.5	8.3	10	14.1	10.4	15.9	11	23.8	24.4	24.1
В	8.1	9	9.1	14	10.3	15.3	11	27.9	28.7	28.3
3 ₁	8.5	9.5	9.5	16.1	10.8	17.4	12	26	26.2	26.1
p	8.4	9.2	10.2	16.1	11.4	18	12.2	27.5	28.7	28.1
3	8.1	8.7	9.1	13.6	10	14.8	10.7	29.4	27.7	28.5
F B	7.2	8.1	9.7	13.1	9.5	14.8	10.4	29.8	30.1	30
e	7.6	8.4	10.6	17	10.6	17.9	12	37.8	36.8	37.3
all	6.7	7.3	8	11.1	8.1	12.1	8.9	21.4	22	21.7

第11日						
Acronyms						
Robust Compressive Gammachirp FilterBank						
RMFB Robust Mel FilterBank						
Multitaper Mel FilterBank with power-law nonlinearity						
Multitaper Mel FilterBank with logarithmic nonlinearity						
ITerative Deconvolution-based Mel FilterBank						
Maximum Likelihood Inverse Filtering-based Dereverberated cepstrum						
Mel FilterBank (Baseline)						
Recognizer Output Voting Error Reduction						
Short-Term Mean and Scale Normalization						
Universal Background Model						
Deep Neural Networks						
Hidden Markov Model						
TempoRAl Pattern						
GammaTone/compressive Gammachirp FilterBank						
Mel-Frequency Cepstral Coefficients						