

A Multichannel Feature Compensation Approach for Robust ASR in Noisy and Reverberant Environments

Ramón F. Astudillo ¹ Sebastian Braun ² Emanuël A. P. Habets ²

¹Spoken Language Systems Laboratory, INESC-ID-Lisboa Lisboa, Portugal

²International Audio Laboratories Erlangen Am Wolfsmantel 33, 91058 Erlangen, Germany

Ľf

The approach integrates STFT-domain enhancement with the ASR system through Uncertainty Propagation.

Three main components detailed:

- Joint reverberation and noise reduction by informed spatial filtering applied in STFT domain.
- Multichannel MMSE-MFCC estimator with different STFT configurations for enhancement and recognition domains.
- Model-based feature enhancement using the MSE of the MMSE-MFCC estimator and Modified Imputation.

Joint reverberation and noise reduction

- source S(k,n), propagation vector
- ► Signal model: single source S(k, n), propagation vector d(k, n), reverberation r(k, n) and additive noise v(k, n)

$$\mathbf{y}(k,n) = \mathbf{d}(k,n)S(k,n) + \mathbf{r}(k,n) + \mathbf{v}(k,n)$$

All components mutually uncorrelated with variances equal to

$$\Phi_{\mathbf{y}}(k,n) = \phi_S(k,n) \, \mathbf{d}(k,n) \mathbf{d}^H(k,n) + \phi_R(k,n) \, \Gamma_{\text{diff}}(k) + \Phi_{\mathbf{v}}(k,n)$$

Multichannel minimum MSE (M-MMSE) source estimate:

$$\hat{S}_{\text{M-MMSE}}(k,n) = \underset{\hat{S}(k,n)}{\arg\min} E\left\{ |S(k,n) - \hat{S}(k,n)|^2 \right\}$$
$$= \underbrace{H_{\text{MMSE}}(k,n) \cdot \mathbf{h}_{\text{MVDR}}(k,n)}_{\mathbf{h}_{\text{M-MMSE}}(k,n)} \mathbf{y}(k,n)$$

Ŀf

Optional use of multichannel MMSE Amplitude (M-STSA) estimate:

$$\hat{S}_{\text{M-STSA}}(k,n) = \underbrace{H_{\text{STSA}}(k,n) \cdot \mathbf{h}_{\text{MVDR}}(k,n)}_{\mathbf{h}_{\text{M-STSA}}(k,n)} \mathbf{y}(k,n)$$

Parameter estimation per time-frequency

- ► DOA for d(k, n): Beamspace root-MUSIC (circular array) [Zoltowski et al. 1992]
- ▶ Diffuse PSD $\phi_R(k, n)$: maximum likelihood estimator [Braun 2013 et al.]
- ► Noise covariance matrix Φ_v(k, n): speech presence probability based recursive estimation [Souden 2011 et al.]

Joint reverberation and noise reduction

Ľf

In the context of ASR, MMSE-MFCC estimators [Yu 2008], [Astudillo 2010], [Stark 2011], bring interesting advantages

- Same signal model as STFT domain estimators e.g. Wiener, MMSE-STSA, MMSE-LSA.
- The approach in [Astudillo 2010], here used, also provides the minimum MSE in MFCC domain.
- The same approach can be applied to derive a M-MMSE-MFCC estimator from the M-MMSE

The posterior distribution for the M-MMSE is given by

$$p(S(k,n)|\mathbf{y}(k,n)) \sim \mathcal{N}_{\mathbb{C}}\left(\hat{S}_{\mathrm{M-MMSE}}(k,n), \lambda(k,n)\right),$$

where the variance is equal to the minimum MSE

$$\begin{aligned} \lambda(k,n) &= E\left\{|S(k,n) - \hat{S}_{\text{M-MMSE}}(k,n)|^2\right\} \\ &= \phi_S(k,n)(1 - \mathbf{h}_{\text{M-MMSE}}^H(k,n)\mathbf{d}(k)) \end{aligned}$$

In theory, the posterior for the M-MMSE-MFCC can be obtained by Uncertainty Propagation as

$$p(c(i,n)|\mathbf{y}(n)) \sim \mathcal{N}_{\mathbb{C}}\left(\hat{c}^{\text{M-MMSE-MFCC}}(i,n), \lambda^{c}(i,n)\right).$$

Ľf

In practice, we need to propagate variances through the STFT.

Let $\phi(n)$ be the variance of speech or noise, the variance after ISTFT+STFT is given by

$$\tilde{\boldsymbol{\phi}}(n') = \sum_{n \in \operatorname{Ov}(n')} |\mathbf{R}_{n'-n}|^2 \boldsymbol{\phi}(n),$$

- R_{n'-n} is built by multiplying the inverse Fourier and Fourier matrices truncated to the corresponding overlap.
- Summing over all overlapping frames Ov attenuates variance artifacts (STFT consistency).
- Correlations induced by overlapping windows ignored.

Since the minimum MSE of the M-MMSE-MFCC is available we can apply observation uncertainty techniques.

Modified Imputation [Kolossa 2005] showed the best performance, this is given by

$$\hat{c}_{q}^{\mathrm{MI}}(i,n') = \frac{\Sigma_{q}(i)}{\Sigma_{q}(i) + \lambda^{c}(i,n')} \hat{c}^{\mathrm{M-MMSE}}(i,n') + \frac{\lambda^{c}(i,n')}{\Sigma_{q}(i) + \lambda^{c}(i,n')} \mu_{q}(i),$$
(1)

where $\pmb{\mu}_q$ and $\pmb{\Sigma}_q$ are the mean and variances of the q-th ASR Gaussian mixture.

Characteristics

- ► M-MMSE-MFCC with optional use of MI as described.
- System is real-time capable, per-frame batch if CMS used.
- ► To improve performance, speech variance φ_S(k, n) re-estimated using the M-STSA.

Implementation

- M-STSA, M-MMSE-MFCC implemented in Matlab.
- Modified version of HTK used for MI.

Proposed System

Beamformed signal: $Z(k,n) = \mathbf{h}_{\text{MVDR}}(k,n)^H \mathbf{y}(k,n)$ Residual variance: $\phi_U(k,n) = \mathbf{h}_{\text{MVDR}}^H(\phi_R \Gamma_{\text{diff}} + \mathbf{\Phi}_{\mathbf{v}}) \mathbf{h}_{\text{MVDR}}$

REVERB 2014 Results

HTK baseline, development set results for clean training

Simulated Data							
	Roo	m 1	Roo	m 2	2 Room 2		Avg.
	Near	Far	Near	Far	Near	Far	
No Proc.	14.43	25.15	43.46	86.64	52.20	88.40	51.67
MSTSA	19.25	27.65	18.68	36.55	24.60	47.16	28.97
M-MFCC	16.94	23.57	17.20	33.47	20.80	44.29	26.03
+MI	15.34	21.85	16.96	33.67	20.99	45.03	25.64

Recorded Data						
	Roo	Avg.				
	Near	Far				
No Proc.	88.33	87.56	87.94			
MSTSA	58.27	61.18	59.71			
M-MFCC	54.15	54.41	54.27			
+MI	51.72	50.31	51.02			

REVERB 2014 Results

HTK baseline, development set results for multi-condition training

Simulated Data							
	Roo	m 1	Roo	m 2	2 Room 2		Avg.
	Near	Far	Near	Far	Near	Far	
No Proc.	16.54	18.88	23.37	43.18	27.40	46.79	29.34
MSTSA	15.46	17.75	17.23	26.13	18.40	30.91	20.97
M-MFCC	15.73	16.79	14.81	21.99	18.05	27.35	19.11
+MI	14.70	16.74	14.30	23.05	17.80	27.42	19.00

Recorded Data					
	Roo	Avg.			
	Near	Far			
No Proc.	52.90	50.79	51.85		
MSTSA	42.48	41.49	41.98		
M-MFCC	40.61	39.23	39.92		
+MI	39.74	37.18	38.46		

- Improvements over M-STSA by integration with ASR.
- Results for real data worse compared to simulated data, but consistent across methods.
- The use of observation uncertainty (MI) yields good results in highly mismatched situations.
- ISTFT+STFT propagation simplifies integration with well established STFT-domain methods.

Thank You!

MMSE-MFCC Matlab code available under

https://github.com/ramon-astudillo/stft_up_tools
MI HTK patches available under

http://www.astudillo.com/ramon/research/stft-up/