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Introduction

� Overview of the proposed system

� Design of the MVDR beamformer

� DOA estimated using MUSIC
� Estimated noise covariance

� Single-channel enhancement scheme

� Combination and optimization of published estimators

� Results

� Objective measures
� MUSHRA scores
� WER using a baseline recognizer
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1. Proposed System

Overview
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� Beamformer: towards estimated direction of arrival (DOA)

� Single-channel enhancement: based on statistical estimators

� Late reverberant spectral variance (LRSV)
� Noise spectral variance (NSV)
� Speech spectral variance (SSV)
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2. MVDR Beamformer

With Ym(k, ℓ) the STFT of the input signal in the m-th
microphone we define

Y(k, ℓ) = [Y1(k, ℓ) Y2(k, ℓ) . . . YM(k, ℓ)]T

The output X̂(k, ℓ) of the beamformer is obtained as

X̂(k, ℓ) = W
H
θ (k)Y(k, ℓ)

where

Wθ(k) = Γ−1(k)dθ(k)

dH

θ
(k)Γ−1(k)dθ(k)

� Noise coherence matrix: Γ(k) estimated using a VAD.

� Steering vector: dθ(k) from θ̂ using a far-field assumption.
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2. MVDR Beamformer

Estimation of noisefield coherence

� Noise periods identified with a VAD
� Comparison between the long-term spectral envelope and the

average noise spectrum

� Γ(k) is estimated using detected noise-only frames

� Alternatively, a theoretically diffuse noise field is used:

Wθ(k) = (Γdiff(k)+̺(k)IM )−1
dθ(k)

dH

θ
(k)(Γdiff(k)+̺(k)IM )−1

dθ(k)

with ̺(k) a constraint such that

WH
θ (k)Wθ(k) ≤ WNGmax = 10 dB

Ramirez, J., Segura, J.C., Benitez, C., de la Torre, A., and Rubio, A., Efficient voice activity detection algorithms using long-term speech information, 2003.
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2. MVDR Beamformer

DOA Estimation
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Uθ(k, ℓ),

where Uθ(k, ℓ) is the MUSIC pseudo-spectra:

Uθ(k, ℓ) = 1
dH

θ
(k)E(k,ℓ)EH(k,ℓ)dθ(k)

E(k, ℓ) = [eQ+1(k, ℓ) . . . eM (k, ℓ)]

with em denoting eigenvectors of the
covariance matrix of Y(k, ℓ).

Schmidt, R., Multiple emitter location and signal parameter estimation, 1986.
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3. Single-channel Enhancement

Overview
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� σ2
ṽ(k, ℓ) estimated using Minimum Statistics

� σ2
s(k, ℓ) estimated using Cepstral Smoothing

� σ2
r (k, ℓ) estimated using Lebart’s approach

Martin, R., Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics, 2001.
Breithaupt, C., Gerkmann T. and Martin, R., A Novel A Priori SNR Estimation Approach Based on Selective Cepstro-Temporal Smoothing, 2008.
Eaton, J., Gaubitch, N.D., Naylor, P.A., Noise-robust reverberation time estimation using spectral decay distributions with reduced computational cost, 2012.
Lebart, K., Boucher J.M. and Denbigh, P., A new method based on spectral subtraction for speech dereverberation, 2013.
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3. Single-channel Enhancement

LRSV estimation

� RIR modeled as Gaussian noise with decay ∆ = 3 ln 10
T60fs
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� Representing the variance of the reverberant speech as:
� σ2

z(k, ℓ) = σ2
r (k, ℓ) + σ2

s(k, ℓ)

� Leads to the estimator
� σ̂2

r (k, ℓ) = e−2∆Tdfs σ2
z(k, ℓ − Td/Ts)

Lebart, K., Boucher J.M. and Denbigh, P., A new method based on spectral subtraction for speech dereverberation, 2001.
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3. Single-channel Enhancement

Gain function

� The output X̂(k, ℓ) of the beamformer contains the anechoic
speech, remaining noise and spatially filtered reverberation

� X̂(k, ℓ) = S(k, ℓ) + Ṽ (k, ℓ) + R(k, ℓ)

� We aim to compute a real gain such that:

� Ŝ(k, ℓ) = G(k, ℓ)X̂(k, ℓ)

� Computation of G(k, ℓ) using an MMSE estimation of the
speech amplitude based on a super Gaussian speech model.

Breithaupt, C., Krawczyk, M., and Martin, R., Parameterized MMSE spectral magnitude estimation for the enhancement of noisy speech, 2008.
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4. Objective Measures

SRMR
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� Illustrates dereverberation performance in all condition

� Better dereverberation achieved by multichannel, except for
T60=500 ms
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4. Objective Measures

FWSSNR
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� Illustrates noise reduction in all condition

� Beamforming step advantageous for the noise reduction
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4. Objective Measures

PESQ
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� Improvement of PESQ score in all condition illustrate the
overall improvement in speech quality
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5. Subjective Tests

MUSHRA test

Intermediate results of the subjective test ran by the organizers:

� Tests carried out separately for 1 and 8 channels
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� Improvement for all tested condition

� Higher improvement of the overall quality
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6. Preprocessing for ASR

Word Error Rate

� Baseline recognizer provided by the organizers

� Using pre-trained models on clean data
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7. Conclusion

� System based on combination of MVDR beamformer and
spectral enhancement

� All parameters are blindly estimated

� Speech enhancement achieved in all conditions in terms of:

� Objective measures
� Subjective tests
� Word error rate
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Thank you very much for your attention

House of Hearing, Oldenburg

Questions ?

Fraunhofer IDMT
Project Group Hearing, Speech and Audio Technology

Oldenburg University
Signal Processing Group

benjamin.cauchi@idmt.fraunhofer.de
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