

Linear prediction-based dereverberation with advanced speech enhancement and recognition technologies for the REVERB challenge

<u>M. Delcroix</u>, T. Yoshioka, A. Ogawa, Y. Kubo, M. Fujimoto, N. Ito, K. Kinoshita, M. Espi, T. Hori, T. Nakatani, A. Nakamura NTT Communication Science Laboratories

Combine state-of-the-art SE and ASR techniques

Significant performance improvement:

SE 8ch (FWSegSNR) : ASR 8ch (WER) :

- $3.62 \text{ dB} \rightarrow 10.31 \text{ dB}$
- 4.2 % (SimData)
- 9.0 % (RealData)

The challenges of the challenge...

→ Powerful dereverberation

- 2. Significant amount of noise

- → Noise robust dereverberation
 + additional noise reduction
- 3. Mismatch between training and testing

→ High performance w/o overfitting Extended training data + unsupervised environmental adaptation

Proposed system

Characteristics of the SE front-end

Characteristics of the ASR back-end

novative R&D by N

Dereverberation

novative R&D by N

y(t)

Dereverberation based on linear prediction (1/2)

Linear prediction for blind equalization

Prediction residual

*

reverberation in current tion from past obs.

 $\overline{n=1}$ Assuming e(t) is Gaussian, g_n can be obtained by g: $F = \sum_{t} \left| y(t) - \sum_{n=1}^{N} g_n y(t-n) \right|$ minimizing:

$$e(t) = y(t) - \sum_{n=1}^{\infty} g_n y(t-n)$$
 observation

 g_n : prediction filter

Dereverberation based on linear prediction (1/2)

Linear prediction for blind equalization

• Prediction residual: $e(t) = y(t) - \sum_{n=1}^{N} g_n y(t-n)$ • Assuming e(t): • Assuming e(t): F = $\sum_{t}^{N} |y(t) - \sum_{n=1}^{N} g_n y(t-n)|^2$ • Predict reverberation in current observation from past observation from past observation for past observa

y(t)

Dereverberation based on linear prediction (2/2)

- Innovative R&D by NTT
- For speech dereverberation [Yoshioka, 2012]
 - Introduce time delay τ

Do not equalize speech generative process

 \rightarrow Focus on late reverberation

Better modeling of speech

Short time Gaussianity of speech w/ time varying variance σ_t^2

 \rightarrow Weighted prediction error (WPE)

• g_n , ${\sigma_t}^2$ can be obtained by minimizing:

$$F = \sum_{t} \frac{|y(t) - \sum_{n=\tau}^{N} g_n y(t-n)|^2}{\sigma_t^2} + \sum_{t} \log(\sigma_t^2)$$

Dereverberation based on linear prediction (2/2)

- For speech dereverberation [Yoshioka, 2012]
 - Introduce time delay τ

Do not equalize speech generative process

 \rightarrow Focus on late reverberation

Better modeling of speech

Short time Gaussianity of speech w/time → Weighted © Precise speech dereverberation , C © Relatively robust to noise © Relatively robust to noise $F = \bigotimes_{t} \text{Implemented in STFT domain } + \sum_{t} \log(\sigma_t^2)$ g_n , σ

Model based Noise reduction

nnovative R&D by N

VTS-like model-based noise reduction [Fujimoto, 2012]

- Spectral model
 - Speech model: pre-trained using clean training data

+ adaptation (per utterance)

• Noise model: estimated per utterance

VTS-like model-based noise reduction [Fujimoto, 2012]

Combines spectral and locational (DOA feature) models of speech and noise[Nakatani, 2013]

 Locational model estimated from multi-channel dereverberation output

SE results: Objective evaluation (Eval set)

w/o front-end Proposed (2ch) **Proposed (8ch)**

CD	SRMR	LLR	FWSegSNR	PESQ
3.97	3.68	0.58	3.62	1.48
2.34	5.06	0.41	10.20	2.43
2.25	5.39	0.43	10.31	2.82

Improvement for all measures

Avg. FWSegSNR (dB) for SimData

SE results: Subjective evaluation (Eval set)

SE results: Spectrograms RealData (Eval)

System overview

ASR back-end

- DNN-HMM based acoustic model
 - layer-wise RBM pre-training + fine tuning w/ stochastic gradient descent
 - 3129 HMM states/ State alignment from clean training data
 - 7 hidden layers (2048 units)
- Features
 - 40 Log mel filter-bank coefficients + Δ + $\Delta\Delta$ (120)
 - 5 left+5 right context (11 frames)
- Language model LM
 - Trigram
 - RNN with fast decoding using on-the-fly rescoring [Hori, 2014]
- Unsupervised environmental adaptation
 - Retrain 1st layer of DNN-HMM w/ small learning rate using labels obtained from a 1st recognition pass

- Combat mismatch between training/SimData and RealData
- \rightarrow Add acoustic variety during DNN training

Summary of ASR results (Eval)

	SimData					RealData				
	Room 1 Ro		Roo	om 2 Room 3		Ave.	Room1		Ave.	
	Near	Far	Near	Far	Near	Far		Near	Far	
w/o front-end	3.8	4.4	5.3	8.5	5.8	9.5	6.2	21.1	23.3	22.2
Best system (8ch)	3.7	4.0	4.0	4.5	4.4	4.8	4.2	8.8	9.3	9.0
+ DOLPHIN					7	\langle	9.0	>		
+ MVDR					9		10.0	>		
+ Derev.		17.4	\mathbf{k}		9 2 ch	5	13.8	>		
+ Adap		1ch	1	22.	2		8	ch		
+ RNN LM				26.	3					
+ Extended	data			27.	5					
Distant (w/ DNN AM & Tr	igram LN	1)			5			For	Reall	Data

Summary of ASR results (Eval)

Conclusion

- Combined advanced SE and ASR techniques for reverberant speech
- Large performance improvement for both SE and ASR tasks

Where are we?

Proposed	Proposed	Proposed Lapel Hea	dset Clean
(1ch)	(2ch)	(8ch) (MC	-WSJ) (WSJCAM0)
17.4 %	12.7 %	9.0 % 8.3 % 5. 9	3. 6 %
		\longleftrightarrow	\longleftrightarrow
		Room for	Non-environmental
		improvement	mismatch between
		for robust ASR	SimData and RealData

Thank you!