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Introduction 

System 

 Method 

Experiments 
•  Speech features were extracted with MVDR cepstral analysis [4]."
•   Final features obtained by concatenation of 15 successive 

cepstral frames and performing LDA to reduce feature size to 10."
•   The speech recognition engine was based on fast on-the-fly 

composition of weighted finite-state transducers [5]."
•   Four passes of recognition were performed with increasing levels 

of speaker adaptation."
•   Unsupervised speaker adaptation was based on word lattices 

from the prior pass."
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•  Only experiments on real data provide results that reliably predict 
performance in real environments. 

•  Maximum negentropy beamforming is more effective than MVDR 
beamforming for DSR applications. 

•  Future work: 
o  Couple our array processing techniques with a DNN recognizer. 
o  Incorporate more speech knowledge into beamforming. 
o  Release our array processing tools into the public domain. 
 

Conclusions and Future Work 

I.  Speaker Tracking: see Section 10.2 in [1]. "

II.  Maximum negentropy beamforming: see Kumatani et al. [2]."

•  The CMU-MIT System for RC2014 has four parts:"
1.  Speaker tracking to determine speech direction of arrival;"
2.  Beamforming to enhance speech from microphone array;"
3.  Speaker clustering to group utterances for speaker 

adaptation;"
4.  An FST-based speech recognition engine."

•  Our system reduced WER from 39.9% with a single array 
channel to 14.5% with eight channels."
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Primary: Our official REVERB Challenge 2014 system 
Contrast A: Single Array Channel, using true speaker labels 
Contrast B: Maximum Negentropy Beamforming, using true speaker labels 
Contrast C: Super Directive Beamforming, using true speaker labels 
Contrast D: Close Talking Microphone, using true speaker labels 

Simulated Data Real Data

Room 1 Room 2 Room 3 Room 1

System Near Far Near Far Near Far Ave. Near Far Ave.

Primary

Contrast A 8.4 10.27 14.1 30.54 17.11 44.65 20.85 38.38 41.41 39.9

Contrast B 7.74 8.68 9 .33 12.81 9.54 19.74 11.31 13.41 15.06 14.50

Contrast C 8.17 9.23 10.10 15.00 15.00 29.04 14.42 16.7 17.93 17.31

Contrast D 6.81 6.81 7.59 7.59 7.08 7.08 7.16 7.98 7.36 7.67

Table 1. Word error rate results of REVERB Challenge 2014 for primary and contrast conditions.

Simulated Data Real Data

Threshold T No. of clusters WER No.of clusters WER

30 71 19.4 19 17.12

50 45 18.8 15 16.80

100 11 20.5 10 16.63

180 5 19.4 5 17.35

Table 2. Comparison of word error rates for different clustering methods.
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III. Speaker Clustering: see [3]."

"

Cluster division stopped for BIC improvement below a threshold."
Table: Speaker Clustering Results on Dev Set"

TDOA estimation 

Kalman Filtering 

Beamforming 

Post-filtering 

Speaker Clustering 

Feature Extraction 

Decoding 
-  Lattice generation 
-  Hypothesis search 

Time delays 

Position estimate 

Speaker cluster ID 

Enhanced speech 

Recognition results 

Array Data 

Adaptation 
- Feature-space adaptation 
-   Model-space adaptation 

 Word lattices 

Speaker 
Tracking 
!

Simulated Data Real Data

Room 1 Room 2 Room 3 Room 1

System Near Far Near Far Near Far Ave. Near Far Ave.

Primary 12.89 14.71 14.09 19.38 16.62 31.45 18.68 16.26 16.54 16.46

Contrast A 8.40 10.27 14.1 30.54 17.11 44.65 20.85 38.38 41.41 39.90

Contrast B 8.12 8.93 9.60 12.99 9.73 20.18 11.80 14.76 14.18 14.50

Contrast C 8.17 9.23 10.10 15.00 15.00 29.04 14.42 18.80 11.04 15.95

Contrast D 6.81 6.81 7.59 7.59 7.08 7.08 7.16 7.98 7.36 7.67

Table 1. Word error rate results of REVERB Challenge 2014 for primary and contrast conditions.

Simulated Data Real Data

Threshold T No. of clusters WER No.of clusters WER

30.0 71 19.4 19 17.12

50.0 45 18.8 15 16.80

100.0 11 20.5 10 16.63

180.0 5 19.4 5 17.35

Table 2. Comparison of word error rates for different clustering methods.


