

Recognition of Reverberant Speech by Missing Data Imputation and NMF Feature Enhancement

Heikki Kallasjoki*, Jort F. Gemmeke, Kalle J. Palomäki, Amy V. Beeston, Guy J. Brown

Department of Signal Processing and Acoustics Aalto University, School of Electrical Engineering heikki.kallasjoki@aalto.fi http://research.spa.aalto.fi/speech/robust/kallasjoki-reverb14/

May 10, 2014

Outline

Introduction

Methods

Missing data imputation NMF-based feature enhancement Further processing

Results

Conclusions

REVERB Challenge May 10, 2014 2/30

Introduction

- Two lines of investigation:
 - Missing data methods for dereverberation
 - Extending NMF-based feature enhancement
- Both turn out to be beneficial for reverberant speech (even with multi-condition training, CMLLR adaptation)

REVERB Challenge May 10, 2014 3/30

Outline

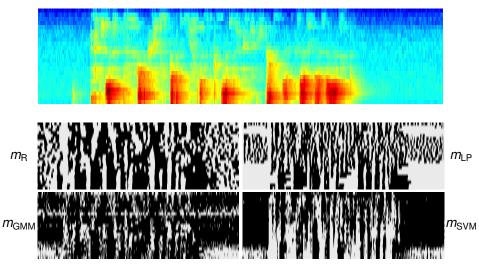
Introduction

Methods Missing data imputation

NMF-based feature enhancement Further processing

Results

Conclusions

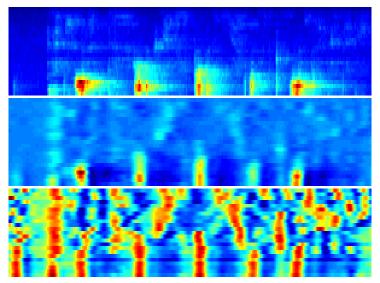

REVERB Challenge May 10, 2014 4/30

Missing Data Framework

- Essential idea: focus on spectro-temporal regions dominated by the speech signal
- Estimate reliability (soft or hard decision)
- Use the estimates to improve speech recognition (e.g. by marginalization, imputation...)
- Can make minimal assumptions about the distortion
- In this work: feature imputation with binary masks

Mask Estimation

REVERB Challenge May 10, 2014 6/30

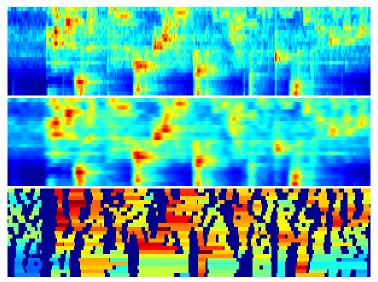

Mask Estimation: m_R

- Based on mel-spectral features compressed to x^{0.3}
- Band-pass modulation filter, 1.5...8.2 Hz
- Followed by an AGC and normalization
- Threshold based on "blurredness" metric: ratio of channel mean and channel max

Mask Estimation: *m*_R, illustrated

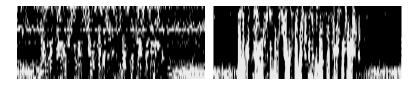
REVERB Challenge May 10, 2014 8/30

Mask Estimation: *m*_{LP}



- Based on normalized x^{0.3} mel-spectral features
- Low-pass modulation filter with cutoff at 10 Hz
- Means of each contiguous region where y' < 0

REVERB Challenge May 10, 2014 9/30


Mask Estimation: *m*_{LP}, illustrated

REVERB Challenge May 10, 2014 10/30

Mask Estimation: *m*_{GMM} & *m*_{SVM}

- Oracle mask: threshold difference between clean and reverberant
- ► Features: spectra, gradient, "blurredness", m_R, m_{LP}
- Train a (GMM or SVM) classifier for each channel

REVERB Challenge May 10, 2014 11/30

Bounded Conditional Mean Imputation

Conditional Mean Imputation

- Model distribution of clean speech x with a GMM
- Estimate missing x_u by conditioning on reliable x_r:

$$\hat{\mathbf{x}}_{u} = \int_{\mathbf{x}_{u}} \mathbf{x}_{u} \, p(\mathbf{x}_{u} \mid \mathbf{x}_{r})$$

Bounded Conditional Mean Imputation

• Use observation as upper bound: $\hat{\mathbf{x}}_u < \mathbf{x}_u^{obs}$

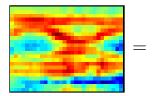
In this work: truncated p(x_u | x_r) approximated with a parametric model

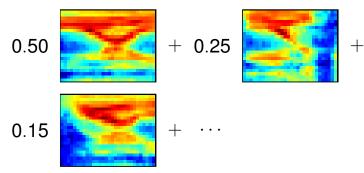
REVERB Challenge May 10, 2014 12/30

Outline

Introduction

Methods Missing data imputation NMF-based feature enhancement Further processing


Results


Conclusions

REVERB Challenge May 10, 2014 13/30

NMF Signal Model

REVERB Challenge May 10, 2014 14/30

Using NMF for Speech Feature Enhancement

Example: source separation for noisy speech

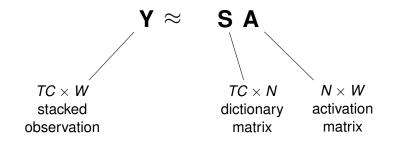
- Fixed dictionary of clean speech and noise samples (also called *exemplars*)
- After solving coefficients, reconstruct clean speech only
- A lot of flexibility here

REVERB Challenge May 10, 2014 15/30

Using NMF for Speech Feature Enhancement

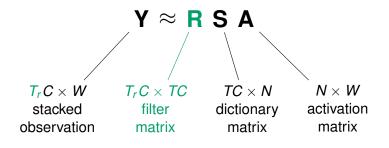
Example: source separation for noisy speech

- Fixed dictionary of clean speech and noise samples (also called *exemplars*)
- After solving coefficients, reconstruct clean speech only
- A lot of flexibility here


What about reverberation?

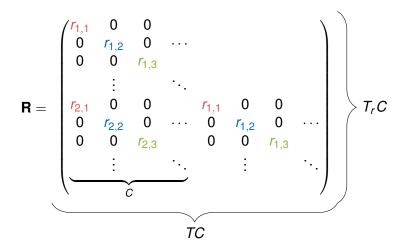
Source separation approach not directly applicable

REVERB Challenge May 10, 2014 15/30


Accounting for Reverberation

REVERB Challenge May 10, 2014 16/30

Accounting for Reverberation


(RS) A: modeling with a reverberated dictionary

▶ **R**(**SA**): reverberating the NMF approximation

REVERB Challenge May 10, 2014 16/30

The Filter Matrix R

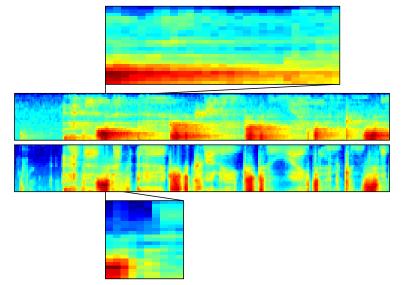
REVERB Challenge May 10, 2014 17/30

Does not want to converge to a useful solution

Sliding-window approach not so suitable for reverberation

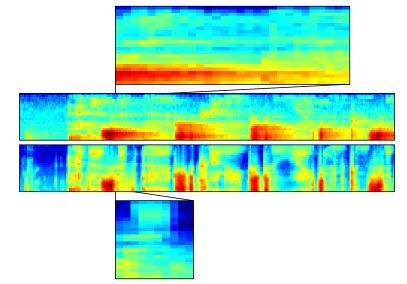
REVERB Challenge May 10, 2014 18/30

Issues


Does not want to converge to a useful solution

- Initialization with missing-data imputation
- Tuning of iteration scheme
- Activation matrix filtering
- Sliding-window approach not so suitable for reverberation
 - Sum overlapping windows in multiplicative updates
 - (Or do convolutive NMF)

REVERB Challenge May 10, 2014 18/30


The Case for Convolutional NMF

REVERB Challenge May 10, 2014 19/30

The Case for Convolutional NMF

REVERB Challenge May 10, 2014 19/30

NMF Feature Enhancement Process

- 1. Estimate **X** using BCMI
- 2. Iteratively update \boldsymbol{A} in $\boldsymbol{\tilde{X}}\approx \boldsymbol{RSA}$ with identity \boldsymbol{R}
- 3. Filter A to suppress consecutive nonzero activations
- 4. Initialize **R** to contain filter $\frac{1}{T_f} [1 \dots 1]$ on all channels
- 5. Iteratively update **R** in **Y** \approx **RSA** with fixed **A** (under constraints $r_{t+1,b} < r_{t,b}$, $\sum_{t,b} r_{t,b} = C$)
- 6. Iteratively update ${\bf A}$ in ${\bf Y}\approx {\bf RSA}$ with fixed ${\bf R}$
- Then use $\hat{X} = SA$ and $\hat{Y} = RSA$ for feature enhancement, with a per-frame Wiener filter in the mel-spectral domain

REVERB Challenge May 10, 2014 20/30

Outline

Introduction

Methods

Missing data imputation NMF-based feature enhancement Further processing

Results

Conclusions

REVERB Challenge May 10, 2014 21/30

Further Processing

Channel Normalization

- Mean of the $\frac{1}{L}$ largest-valued samples on each channel
- Reduces mismatch between NMF dictionary and test data

Beamforming

- Simple delay-sum beamformer
- TDOA estimation with PHAT-weighted cross-correlation

REVERB Challenge May 10, 2014 22/30

Outline

Introduction

Methods

Missing data imputation NMF-based feature enhancement Further processing

Results

Conclusions

REVERB Challenge May 10, 2014 23/30

- REVERB Challenge HTK recognizer
- Four sets of acoustic models:

Clean WSJCAM0 clean speech training set

MC REVERB Challenge multi-condition training set

MC+ad. ... with CMLLR adaptation over a test condition

8-ch. ... on audio preprocessed with the PHAT-DS beamformer

REVERB Challenge May 10, 2014 24/30

Results for Mask Estimation Methods

Development set, clean speech acoustic models

		SimData	RealData
Baseline		51.81	88.51
BCMI	mask <i>m</i> _R	40.07	67.88
	mask <i>m</i> _{LP}	48.01	73.06
	mask <i>m</i> _{GMM}	39.94	70.87
	mask <i>m</i> _{SVM}	40.78	74.14
NMF (with <i>m</i> _R)		28.26	58.84

Results for Mask Estimation Methods

Development set, clean speech acoustic models

		SimData	RealData
Baseline		51.81	88.51
BCMI	mask <i>m</i> _R	40.07	67.88
	mask <i>m</i> _{LP}	48.01	73.06
	mask <i>m</i> _{GMM}	39.94	70.87
	mask <i>m</i> _{SVM}	40.78	74.14
NMF (with <i>m</i> _R)		28.26	58.84

REVERB Challenge May 10, 2014 25/30

Results for Feature Enhancement

Model	FE	SimData	RealData
Clean	Baseline	51.82	89.04
	BCMI	39.14	71.67
	NMF	29.74	59.13
	Baseline	29.60	56.58
MC	BCMI	27.25	51.31
	NMF	24.11	47.06
MC+ad.	Baseline	25.37	48.88
	BCMI	24.58	46.05
	NMF	21.91	41.41
8-ch.	Baseline	19.76	40.21
	BCMI	19.40	38.28
	NMF	17.80	34.79

Results for Feature Enhancement

Model	FE	SimData	RealData
Clean	Baseline	_	_
	BCMI	-24.5%	-19.5%
	NMF	-42.6%	-33.6%
MC	Baseline	_	_
	BCMI	-7.9%	-9.3%
	NMF	-18.5%	-16.8%
MC+ad.	Baseline	_	_
	BCMI	-3.1%	-5.8%
	NMF	-13.6%	-15.3%
8-ch.	Baseline	_	_
	BCMI	-1.8%	-4.8%
	NMF	-9.9%	-13 .5%

REVERB Challenge May 10, 2014 26/30

Outline

Introduction

Methods

Missing data imputation NMF-based feature enhancement Further processing

Results

Conclusions

REVERB Challenge May 10, 2014 27/30

Conclusions

Main results

- Both methods are beneficial in reverberant environments, also in conjunction with MC training, CMLLR, beamforming
- NMF approach outperforms the missing data methods
- Activation filtering degrades performance for clean speech

Future plans

- Missing data: improving the mask estimation
- NMF: convolutional NMF, activation matrix filtering
- Tackling both noise and reverberation with NMF
- Use of uncertainty information

REVERB Challenge May 10, 2014 28/30

References

- K. J. Palomäki, G. J. Brown, and J. P. Barker, "Techniques for handling convolutional distortion with 'missing data' automatic speech recognition," Speech Communication, vol. 43, no. 1-2, pp. 123–142, 2004.
- U. Remes, "Bounded conditional mean imputation with an approximate posterior," in Proc. INTERSPEECH, 2013, pp. 3007–3011.
- K. J. Palomäki, G. J. Brown, and J. P. Barker, "Recognition of reverberant speech using full cepstral features and spectral missing data," in Proc. ICASSP, 2006.

Samples and sources

http://research.spa.aalto.fi/speech/robust/kallasjoki-reverb14/

Questions

REVERB Challenge May 10, 2014 30/30