PBF-GSC BEAMFORMING FOR ASR AND SPEECH ENHANCEMENT IN REVERBERANT ENVIRONMENTS

Yi Ren Leng, Jonathan William Dennis, Ng Wen Zheng Terrence, and Huy Dat Tran Human Language Technology Department, Institute for Infocomm Research, A*STAR, Singapore

Optimizing performance in realistic noisy environments:

- · Using multi-condition models instead of clean models for better performance in noise
- Concentrate on RealData test set as it is closer to real situations and offers more room for improvement
- Beamform 8-channel audio into a single enhanced channel using proposed PBF-GSC system combining Generalized Sidelobe Canceller (GSC) and Phase-error based filtering (PBF)

Generalized Sidelobe Canceller (GSC)

- Reference signal for GSC obtained by combining the audio channel STFT weighted by the PBF masking coefficients transformed back into the temporal domain
- Adaptive LMS filter using SGD iteratively filters the reference signal using a simple blocking matrix

Phase-error based filtering (PBF)

- Maximize SNR between channels using phase angle $\theta_{ij}(t) = \angle X_i(t) \angle X_j(t), \qquad i \neq j$ where X_i is the STFT of the audio channel
- The phase errors are combined into a masking coefficient for each channel *i*

$$M_i(t) = \left(\prod_{j=1, j \neq i}^n \frac{1}{1 + \gamma \theta_{ij}^2(t)}\right)^{\frac{1}{k}}$$

Speech Recognition Results:

	Beamform	SimData								RealData		
	Deaminoini	Near1	Far1	Near2	Far2	Near3	Far3	Avg.	Near	Far	Avg.	
нтк	Baseline	16.76	18.35	20.78	32.75	24.79	39.96	25.55	49.92	47.54	48.73	
	FBF only	16.66	17.35	16.88	23.35	18.94	27.95	20.18	37.11	38.15	37.63	
	GSC only	17.50	18.65	17.14	21.93	18.84	27.71	20.29	37.66	37.44	37.55	
	PBF only	16.59	17.64	16.93	23.01	19.01	27.69	20.14	36.92	37.85	37.38	
		17.43	18.67	17.14	22.03	18.89	27.52	20.27	35.68	36.66	36.17	
Kaldi DNN	Proposed	13.17	12.52	11.00	13.33	12.63	17.54	13.36	32.32	33.56	32.94	
Kaldi SGMM		11.52	11.44	9.66	12.56	11.09	15.25	11.92	28.68	30.89	29.79	

Speech Enhancement

- PBF-GSC output is enhanced further by online estimation of gamma modeling of speech power: where σ_s² denotes the variance of the speech spectrum and (a;b;L) are distribution parameters, while the Gaussian distribution is used to model the noise complex spectrum distributions.
- $p(|S|) = \frac{b^{a}}{\Gamma(a) \sigma_{S}} \left(\frac{|S|}{\sigma_{S}}\right)^{La-1} \exp\left[-b\left(\frac{|S|}{\sigma_{S}}\right)^{L}\right]$
- MAP estimator gives a closed form solution for the spectral magnitude estimate:
 where [⊆] and ^Y denote the prior and posterior SNR estimates at each time-frequency index

$$G = \frac{1}{2\left(1 + \frac{b}{\xi}\right)} + \sqrt{\frac{1}{4\left(1 + \frac{b}{\xi}\right)^2} + \frac{4a - 3}{4\gamma\left(1 + \frac{b}{\xi}\right)}}$$

Infocomm Research

Speech Enhancement Results:

	Measure	SimData								RealData		
	ivicasure	Near1	Far1	Near2	Far2	Near3	Far3	Avg.	Near	Far	Avg.	
Single-channel	Cepst Distance	3.30	3.71	5.01	5.58	4.76	5.35	4.62	-	-	-	
	Loglike Ratio	0.58	0.64	0.79	1.00	1.00	1.12	0.86	-	-	-	
	Seg SNR	6.61	6.16	4.23	3.25	4.19	4.19	4.58	-	-	-	
	SRMR	5.3	5.72	6.26	5.37	5.15	4.42	5.37	7.97	7.65	7.81	
8-channel	Cepst Distance	2.15	2.48	2.75	3.88	2.88	3.94	3.01	-	-	_	
	Loglike Ratio	0.26	0.31	0.39	0.57	0.48	0.67	0.45	-	-	-	
	Seg SNR	11.08	10.1	6.84	5.76	7.35	4.53	7.61	-	-	-	
	SRMR	4.09	4.15	3.5	3.67	3.90	3.21	3.75	3.67	3.79	3.73	

Selected References:

- Tran Huy Dat, Kazuya Takeda, and Fumitada Itakura, "Gamma modeling of speech power and its on-line estimation for statistical speech enhancement," IEICE Trans. Inf. Syst., vol. E89-D, no. 3, pp. 1040–1049, Mar. 2006.
- C. Knapp and G. Clifford Carter, "The generalized correlation method for estimation of time delay," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 24, no. 4, pp. 320–327, 1976.
- Lloyd J. Griffiths and Charles W. Jim, "An alternative approach to linearly constrained adaptive beamforming," IEEE Trans. Antennas and Propagation, vol. 30, no. 1, pp. 27–34, Jan. 1982.
- C. Y. Lai and P. Aarabi, "Multiple-microphone timevarying filters for robust speech recognition," in Proc. ICASSP, 2004, vol. 1, pp. 233–236.