REVERBERATION SUPPRESSION BASED ON SPARSE LINEAR PREDICTION IN NOISY ENVIRONMENTS

Nicolás LOPEZ^{1,2}, Gaël RICHARD², Yves GRENIER², Ivan BOURMEYSTER¹

¹Arkamys - Paris, France / ²Institut Mines-Télécom ; Télécom ParisTech ; CNRS LTCI - Paris, France nlopez@arkamys.com

Proposed Approach

A single channel late reverberation and noise suppression method is presented:

Reducing Complexity: Subband Gathering

- Subsample spectrogram X from K to $J \ll K$ channels
 - ♦ Define a *J*-segment partition \mathcal{P} of [1, K]
- ♦ Take average in each segment and obtain subsampled spectrogram X^s
 - ♦ Solve LASSO in each subsampled channel

• Late reverberation estimated using frequency domain linear prediction with sparse constraints

Background noise estimated when speech is absent

• Blind processing is assumed

• **Real time** method

Late Reverberation Estimation

• Observation model:

 $X_{k,n} = X_{k,n}^{early} + X_{k,n}^{late}$

• Late reverberation model:

 $\hat{X}_{k,n}^{late} = \sum_{i=0}^{\infty} \alpha_{k,i} X_{k,n-i-\delta} = D_{k,n} \alpha_{k}$

• Estimate late reverberation using dictionary (1) and the J subsampled predictors, mapped to Kchannels

Reducing Complexity: Block-wise processing

• For each subsampled frequency j, estimate one single predictor for N adjacent frames:

♦ Define an observation vector:

 $V_{j,n} = \begin{bmatrix} X_{j,n}^s & \dots & X_{j,n-N+1}^s \end{bmatrix}^T$

♦ Define a block-based dictionary:

 $D_{j,n}^{V} = \begin{bmatrix} V_{j,n-\delta} & \dots & V_{j,n-\delta-L+1} \end{bmatrix} \in \mathbb{R}^{N \times L}$

 \diamond Find j^{th} predictor and map to k channels: minimize $||V_{j,n} - D_{j,n}^V \boldsymbol{\alpha}_j||^2$ s.t. $||\boldsymbol{\alpha}_j||_1 \leq \lambda$

♦ Estimate late reverberation using dictionary (1):

$$V_{k,n}^{late} = \begin{bmatrix} X_{k,n}^{late} & \dots & X_{k,n-N+1}^{late} \end{bmatrix}^T$$

L: model order, δ : delay

• Estimation with the LASSO :

minimize $||X_{k,n} - D_{k,n} \boldsymbol{\alpha}_{k}||^{2}$ s.t. $||\boldsymbol{\alpha}_{k}||_{1} \leq \lambda$

♦ Sparse prediction vector:

 $\boldsymbol{\alpha}_{\boldsymbol{k}} = [\alpha_{k,0} \ldots \alpha_{k,L-1}]^T$

♦ Signal-based dictionary :

 $D_{k,n} = [X_{k,n-\delta} \dots X_{k,n-\delta-L+1}]$ (1)

• Solution with Least Angle Regression (LARS) algorithm

• Late reverberation *psd*:

 $R_{k,n}^{late} = \beta_{\ell} R_{k,n-1}^{late} + (1 - \beta_{\ell}) |\hat{X}_{k,n}^{late}|^2$

Evaluation

Speech Enhancement Task: RTF : 9.41% on *SimData* and 9.29% on *RealData*

	Roo	m 1	Roo	m 2	Roo	Ave.	
CD	Near	Far	Near	Far	Near	Far	
Baseline	1.99	2.67	4.63	5.21	4.38	4.96	3.97
DRVNR	2.67	3.03	4.32	4.87	4.14	4.63	3.94
DRV	3.88	4.21	4.65	5.22	4.61	5.07	4.61
NR	4.45	4.82	4.41	5.35	4.86	5.64	4.92

	Roo	m 1	Roo	m 2	Roo	Ave.	
LLR	Near	Far	Near	Far	Near	Far	
Baseline	0.35	0.38	0.49	0.75	0.65	0.84	0.58
DRVNR	0.42	0.45	0.51	0.72	0.67	0.81	0.60
DRV	0.79	0.83	0.81	1.02	0.94	1.06	0.91
NR	0.78	0.86	1.01	1.23	1.09	1.28	1.04

			Si	R	ealDa	ata				
SRMR	Room 1		Room 2		Room 3		Ave.	Roo	m 1	Ave.
	Near	Far	Near	Far	Near	Far		Near	Far	
Baseline	4.50	4.58	3.74	2.97	3.57	2.73	3.68	3.17	3.19	3.18
DRVNR	6.96	8.19	6.59	7.21	6.23	6.28	6.91	7.40	7.68	7.54
DRV	5.91	6.39	5.83	5.94	5.70	5.77	5.92	9.05	8.83	8.94
NR	4.70	5.09	4.28	4.01	4.28	3.76	4.35	4.62	4.76	4.69

	Roo	m 1	Roo	$m 2 \mid$	Roo	Ave.				
FWSNR	Near	Far	Near	Far	Near	Far				
Baseline	8.12	6.68	3.35	1.04	2.27	0.24	3.62			
DRVNR	6.47	6.29	4.05	2.91	3.51	2.42	4.27			
DRV	4.95	4.63	5.16	3.90	4.62	3.54	4.47			
NR	6.18	5.50	5.69	1.06	3.56	0.93	3.82			

Background Noise Estimation

• Use Voice Activity Detection with hard threshold

• Update noise psd if speech is absent : $Z_{k,n} = \beta_Z Z_{k,n-1} + (1 - \beta_Z) |X_{k,n}|^2$

• If reverberation is high, it is likely to be estimated as noise \Rightarrow If $Z_{k,n} \approx R_{k,n}^{late}$: suppress reverberation only • Filtering using the LSA estimator for multiple interferences

ASR Task: focus on DRVNR approach

	SimData									lealDa	ta			
WER	Roc	om 1	Roo	m 2	Room 3		Ave.		Room 1		Ave.	• Good performa		
	Near	Far	Near	Far	Near	Far		Π	Near	Far		field and in hig roo		
Baseline	12.93	17.72	24.03	72.54	30.46	79.72	39.53		83.16	84.48	83.81	mena ana mi big ioo		
AM_{clean}	17.54	22.42	24.04	45.60	30.78	56.92	32.87	Π	74.58	71.71	73.14	\bigcirc 1,		
AM_{mmc}	19.13	21.42	21.00	29.89	24.45	35.24	25.35	Π	52.06	51.08	51.57	• Over subtraction		
	•	•	•	•	•	•	•				·			

• AM_{clean} : Acoustic Model trained on clean data

• AM_{mmc} : Acoustic Model trained on Multi-Condition data processed with DRVNR approach.

nce in far oms

in small consequence of rooms: blind processing