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Introduction

* Use deep learning in both frontend and
backend of the speech recognizer to handle
reverberant speech.

— Frontend: speech feature enhancement
(dereverberation) w/ deep autoencoder

— Backend: acoustic modeling w/ deep neural
networks



Our submitted results for the challenge
and final results on paper

Our submitted results

Rooml Room?2 Room3 Ave |rooml Ave.
Near |Far Near |Far Near |Far Near |Far
Real- |129 134 (159 (264 |185 |30.5 |19.6 |52.2 |52.3 |52.3
time
Full 13.0 |13.3 [154 249 |179 |28.6 [28.8 |50.6 |50.5 |50.6
batch ~— |
; Forgot to include results by full batch adaptation in the paper. Sorry!}
Our final results with DAE feature enhancement (and some bug fixes)
Rooml Room?2 Room3 Ave |rooml Ave.
Near |Far Near |Far Near |Far Near |Far
Real- 10.3 |10.6 [129 |21.4 |14.1 |23.3 |155 |49.3 |48.1 |48.7
time(a)
Real- 14.2 |14.2 |13.3 |195 [(14.0 |18.8 |15.7 |455 (452 |454
time(b) [ |

[ Results with DAE enhancement not in time for result submission deadline }




Standard procedure for training DNN

unsupervised

stacking RBMs

supervised
fine-tuning
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Hybrid model (DNN-HMM)
[Mohamed 12][Dahl 12]
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* GMMs for calculating state probabilities replaced by a single DNN
* Other parameters like transition probabilities copied from a well-
trained GMM-HMM




Deep autoencorders (DAEs) [06 Hinton]
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Input > V,

— Decoder

— Encoder

(traditional)

* Deep neural networks used for
regression tasks
* Encoder layers generate
compact representation for
Decoder to recover the input
data
* DAE trained as denoising
autoencoder:
- Input = corrupted data
- Target = clean data




Deep autoencorders (DAEs)
(our network for dereverberation)
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Our proposed network
(Combination of DNN-HMM and denoising DAE)
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Speech recognition experiments
* DNN Training

— input: Multi-condition data target: Frame-level state labels

* DAE Training

— input: Multi-condition data target: Clean data

* Reverberant speech frames and clean speech frames are
adjusted to be time-aligned

e Test data
— Simulated data: 3264 utts

 Rooms: Small (T60 = 0.25s), Med (0.5s), Large (0./s)

* Mic. distances: Near (= 50cm), Far (= 200cm)
— Real data: 372 utts:

 Room: Large (T60 = 0./s)
* Mic. distances: Near (= 100cm), Far (= 250cm)
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Performance of DNN-HMM
for reverberant test data

1 GMM(clean)

GMM(multicond)

B GMM(multicond,MLLR)

DNN(clean)

® DNN(multicond)

Sim. Small Near Sim.Small Far ~ Sim. Med Near = Sim. Med Far  Sim. Large Near Sim. Large Far Real Near Real Far

B vs. B: DNN-HMMs achieves drastically higher
accuracies than adapted GMM-HMMs

vs. B : multi condition training effective for DNN-
HMMs as well as GMM-HMMs ( vs. )




Performance of DAE
for reverberant test data

+— ™ DNN(clean)+DAE

T ® DNN(multicond)

DNN(clean)

Sim. Small Near Sim Small Far Sim. Med Near Sim. Med Far Sim. Large Near  Sim. Large Far Real Near Real Far

vs. [l : By using DAE as frontend, accuracies by clean DNN
improved drastically

M vs. M Interestingly, performance of clean DNN combined
with DAE almost the same as multicond. DNN without DAE




Example of DAE-enhanced speech feature

Reverbera nt FBANK feature
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Effectiveness of combination of
multicond. DNN-HMM and DAE

_______________________________________________________________
’ N

45 +——— ® DNN(multicond)

B DNN(multicond)+DAE

__________________________

Sim. Small Nea Sim. Small Far Sim. Med Near Sim. Med Far Sim. Large Near ~ Sim. Large Far Real Near Real Far

In less adverse conditions, In very adverse conditions,
speech “enhancement” by significant improvements

DAE harmful obtained by combining DAE with
multicond. DNN-HMM




Conclusion

 Deep learning effective for reverberant speech
recognition
— Multi condition training of DNN-HMMs
— Speech feature enhancement by DAEs

* Combined DAE and multicond. DNN-HMM achieves
larger accuracy improvements in more adverse
reverberant conditions.

* Further error reduction by adapting DNN-HMMs to
the DAE-enhanced features



