
We present a monaural blind dereverberation method based on sparse coding of deconvolved version of reverberated 

speech signal in a dictionary which is learned by joint dictionary learning method, consisting of the concatenation of a 

clean speech and a non-negative matrix factor deconvolution result of the reverberated copy. The environment specific 

dictionary is originally learned off-line on a training corpus for different locations, while adaptive dictionary learning 

continues on-line for any other surroundings. Our approach uses both non-negative blind deconvolution and sparse 

coding, and achieves some improvements on objective voice quality testing’s like perceptual evaluation of speech 

quality. 

ABSTRACT 

PROPOSED METHOD 

Our structure is based on the sparse and non-negative nature of magnitude of speech signals in STFT domain as recently 

proposed for speech enhancement. We assume that the phase of the reverberated signal can approximate phase of the 

dereverberated signal as is commonly used in the derivation of speech enhancement algorithms e.g. spectral 

subtraction, adaptive filtering, and subspace approach. 

 

Motivations 

Convolutive reverberation can be expressed in terms of RIR. Equivalently, in STFT domain we may write: 

(1) 

 

where   ,    and H are magnitudes of reverberated signal, clean signal and RIR in frequency domain respectively. 

Equation (1) can also be written in the form of operators as following: 

(2) 

 

where the arrow operator shifts the columns of its argument by m spots to the right. 

Non-negative Matrix Factor Deconvolution (NMFD): beginning with the decomposition of non-negative matrix  into 

multiplication of two non-negative matrices  and  where P < M such that we minimize the error of reconstruction of V by 

W·H using the cost function introduced by Lee et al. [17]: 

 

(3) 

which yields to an iterative solution: 

 

(4) 

 

 

where the cross operator enclosed by a circle is Hadamard product (an element-wise multiplication) and divisions are 

element-wise too. Setting 

(5) 

and using cost function 

(6) 

results: 

 

 

(7) 

 

 

substituting Wt, V and Λ with      ,    and     consequently yields: 

 

 

(8) 

 

 

 

Joint Dictionary Learning: In a pioneering work on producing supper resolution images by Yang et al. [16], a pair of 

jointly learned dictionaries (   ,   ) is used, one dictionary for blurred samples and the other for sharp samples. During 

training, a dictionary D is learned to represent both sharp and blurred examples simultaneously with the same sparse 

code e.g. α; then D is split into two distinct dictionaries  and  to represent blurry  and sharp samples  in consequence. At 

test time, given a new blurry sample x, a sparse code α is obtained by decomposing x using Db, and ones hopes  to be a 

good estimate of the unknown sharp sample. 

There is an interesting relationship between dictionary learning method used for image processing application to extract 

supper resolution samples from the blurry one and our application which aims to enhance the speech spectrogram of 

deconvolved version of reverberated speech signal,   , which is sparse enough and will have possibly overcomplete 

dictionary. 

Having both clean and reverberated speech signals at training time, we first deconvolve reverberated signal to get __  

and then use it as a training set similar to what is done in deblurring application as blurry patches. Therefore, we may 

write: 

(9) 

or 

(10) 

 

where     ,     and     are named joint, clean and reverberated dictionaries respectively. 

  

Proposed Architecture 

Our approach is based on two distinct steps: deconvolution and enhancement. Deconvolution step is commonly applied 

in both training and test, but enhancement has different story. For the enhancement step, a possibly overcomplete 

dictionary of atoms is trained jointly using joint dictionary learning,  for clean and deconvolved version of reverberated 

copy of speech magnitudes which are then split into two distinct dictionaries named as clean and reverberated. In the 

enhancement step, an observation of reverberated speech is first deconvolved and then sparsely coded in the 

reverberated dictionary. The clean speech magnitude is estimated by multiplying clean dictionary to the extracted 

sparse code. This estimate is combined with the post-processed phase of the reverberated signal to produce the time 

domain signal. 

We supposed that the observed reverberated speech magnitude is the convolution result of clean speech magnitude  and 

RIR. The goal of the deconvolution step is to obtain an estimate  of clean speech and an estimate of the RIR. For the 

formal analysis, we distinguish between convolutive and non-convolutive reverberation effects (e.g. classroom and 

studio, respectively), and make use of results from sparse coding theory to enhance only reverberated speech in the 

convolutive environments. 

Given    , a speech dictionary    and a reverberant dictionary    we find spars decomposition of estimated speech in  __ 

using LARC sparse coding algorithm [14]: 

  (11) 

  

and multiply known dictionary  to sparse code α to make final dereverberated or clean speech estimate: 

  

(12) 
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