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Golden age of speech recognition

• More investment, more languages, and more data than ever before
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Golden age of robustness?

• Yes! 

• Many large scale deployments in challenging environments
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Golden age of robustness?

• No! 

• No overlap in software, tools, systems means no common ground

Robust ASR LVCSR
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Finding common ground…

• DNNs + Software Tools + GPUs have democratized the field
• Diplomacy through back propagation!

• Whoo-hoo!
• Anyone can get state of the art ASR with one machine and free software
• Lowest barrier to entry in memory (recall Aurora 2)

• Uh-oh!  
• DNN systems achieve excellent performance without noise robustness
• Aurora 4, voice search, Chime, AMI meetings

• What to make of all this? Is robustness dead? 
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This talk

• A look at DNN acoustic models with an emphasis on issues of robustness
• What is a DNN? 

• Why do they work?

• When do they fail?

• How can they be improved? 

• Goals: 
• Emphasize analysis over intensive comparisons and system descriptions

• Open up the black box a bit

• Show what DNNs do well so we can improve what they don’t
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A quick overview of deep neural networks

• Catchy name for MLP with “many” 
hidden layers
• In: context window of frames
• Out: senone posterior probability

• Training with back propagation to 
maximize the conditional likelihood 
at the frame or sequence level

• Optimization important & difficult, 
pre-training helps

• At runtime, convert posteriors to 
scaled likelihoods and decode as 
usual 𝒗

𝒉1

𝒉2

𝒉𝑁

𝑺
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Deep Neural Networks raise all boats…

• All tasks improve
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Deep Neural Networks raise all boats…

• All phonemes improve

[Huang 2014]
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Deep Neural Networks raise all boats…

• All SNRs improve

[Huang 2014]
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The power of depth

# of Layers x 
# of Neurons

SWBD WER (%)
[300hrs]

Aurora 4 WER(%) 
[10hrs]

1 x 2k 24.2 ---

3 x 2k 18.4 14.2

5 x 2k 17.2 13.8

7 x 2k 17.1 13.7

9 x 2k 17.0 13.9

• Accuracy increases with depth
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The power of depth

# of Layers x 
# of Neurons

SWBD WER (%)
[300hrs]

Aurora 4 WER(%) 
[10hrs]

1 x 2k 24.2 ---

3 x 2k 18.4 14.2

5 x 2k 17.2 13.8

7 x 2k 17.1 13.7

9 x 2k 17.0 13.9

1 x 16k 22.1 --

• Depth is not just a way to add parameters
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Why have DNNs been successful?

• Many simple nonlinearities combine to 
form arbitrarily complex nonlinearities

• Single classifier shares all parameters 
and internal representations

• Joint feature learning & classifier design
• Unlike tandem or bottleneck systems

• Features at higher layers more invariant
and discriminative than at lower layers

log-linear 
classifier

nonlinear 
feature 

extraction
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𝒗

𝒉1
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𝒉𝑁

𝒔
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How is invariance achieved?

• How do DNNs achieve invariance in the representation?

• Consider forward propagation: 𝒉𝑙+1 = 𝜎 𝑾𝑙𝒉𝑙 = 𝑓(𝒉𝑙)

𝒉𝑙

𝒉𝑙+1

+𝛿𝑙

+? ? ?
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How is invariance achieved?

• Forward propagation:

𝜕𝑓

𝜕ℎ
≈
𝑓 ℎ + 𝛿 − 𝑓 ℎ

𝛿

ℎ𝑙+1 = 𝜎 𝑊𝑙ℎ𝑙 = 𝑓(ℎ𝑙)

𝒉𝑙

𝒉𝑙+1

+𝛿𝑙

+𝛿𝑙+1

𝛿𝑙+1 ≈ 𝜎′ 𝑊𝑙ℎ𝑙 𝑊𝑙
𝑇𝛿𝑙

𝛿𝑙+1 = 𝜎 𝑊𝑙 ℎ𝑙 + 𝛿𝑙 − 𝜎 𝑊𝑙ℎ𝑙

𝛿𝑙+1 < 𝑑𝑖𝑎𝑔 ℎ𝑙+1 ∘ 1 − ℎ𝑙+1 𝑊𝑙
𝑇 𝛿𝑙
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How is invariance achieved?

𝛿𝑙+1 < 𝑑𝑖𝑎𝑔 ℎ𝑙+1 ∘ 1 − ℎ𝑙+1 𝑊𝑙
𝑇 𝛿𝑙

• The first term always <=0.25

• Much smaller when saturated
• Higher layers are more sparse
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How is invariance achieved?

𝛿𝑙+1 < 𝑑𝑖𝑎𝑔 ℎ𝑙+1 ∘ 1 − ℎ𝑙+1 𝑊𝑙
𝑇 𝛿𝑙

• The first term always <=0.25

• Much smaller when saturated
• Higher layers are more sparse

• For large networks, most weights 
are very small
• SWBD: 98% of weights < 0.5
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How is invariance achieved?

• “𝛿 gain” < 1 on average

• Variation shrinks from one layer 
to the next

• Maximum is > 1
• Enlarge 𝛿 near decision boundaries

• More discriminative 

• For input “close” to training data, 
each layer improves invariance

• Increases robustness
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𝑇
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Visualizing invariance with t-SNE 

• A way to visualize high dimensional data in a low dimensional space

• Preserves neighbor relations

• Use to examine input and internal representations of a DNN

• Consider a parallel pair of utterances:
• a noise-free utterance recorded with a close-talking microphone

• the same utterance corrupted by restaurant noise at 10 dB SNR
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Visualizing invariance with t-SNE

• Features
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Visualizing invariance with t-SNE

• 1st layer

REVERB 2014 22



Visualizing invariance with t-SNE

• 3rd layer
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Visualizing invariance with t-SNE

• 6th layer

Silence
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Invariance improves robustness

• DNNS are robust to small variations of the training data

• Explicitly normalizing these variations is less important/effective
• Network is already doing it

• Removing too much variability from the data may hinder generalization

Preprocessing Technique Task DNN Relative Imp

VTLN  (speaker) SWBD <1% [Seide 2011]

C-MMSE (noise) Aurora4/VS <0% [Seltzer 2013]

IBM/IRM Masking (noise) Aurora 4 <0% [Sim 2014]
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The end of robustness?

• “The unreasonable effectiveness of data” [Halevy 2009]

• In DNN terms: with more data, the likelier a new sample lies within 𝛿
of a training example  

“The more training data used, the greater the 
chance that a new sample can be trivially 
related to samples in the training data, thereby 
lessening the need for any complex reasoning 
that may be beneficial in the cases of sparse 
training data.” [Brill 2002]
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(Un)fortunately, data is not a panacea

• Even in the best cases, performance gaps persist
• Noisy is 2X WER of Clean (Aurora 4, VS)
• Unseen environments 2X WER of seen noises with MST (Aurora 4)
• Farfield is 2X WER of Close-talk (Meetings)

• Some scenarios cannot support large training sets
• Low resource languages

• Mismatch is sometimes unavoidable 
• New devices, environments

• Sometimes modeling assumptions are wrong
• Speech separation, reverberation
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Robustness: the triumphant return! 

• Systems still need to be more robust to variability
• speaker, environment, device

• Guiding principles:
• Exposure to variability is good (multi-condition training)

• Limiting variability can harm performance

• Close relationship to desired objective function is desirable
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Approach 1: Decoupled Preprocessing

• Processing independent of downstream activity
• Pro: simple

• Con: removes variability 

• Biggest success: beamforming [Swietojanski 2013]

Preprocessing
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Approach 2: Integrated Preprocessing

• Treat preprocessing as initial “layers” of model
• Optimize parameters with back propagation

• Examples: Mask estimation [Narayanan 2014], Mel optimization [Sainath 2013]

• Pro: should be “optimal” for the model 

• Con: expensive, hard to “move the  needle” 

Preprocessing Back-prop
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Approach 3: Augmented information

• Augment model with 
informative side information
• Nodes (input, hidden, output)

• Objective function

• Pros: 
• preserves variability

• adds knowledge

• operates on representation

• Con: 
• No physical model

Knowledge +
Auxiliary information
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Example: co-channel speech separation

• Create multi-style training data

• Train 2 DNNs 
• Frame-level SNR to label

• Jointly decode both hypotheses
• Add trained adaptive penalty 

to penalize frequent switching

• Speech Separation Challenge: 
• IBM Superhuman: 21.6% WER

• Proposed: 20.0% WER

h
yp

2

hyp 1
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Example 2: noise aware training/adaptation

• Similar motivation to noise-adaptive 
training of GMM acoustic models

• Give network cues about source of 
variability [Seltzer 2013]

• Preserve variability in training data

𝒗

𝒉𝑁

𝒔

𝒉1

 𝒏
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Example 2: noise aware training/adaptation

• Similar motivation to noise-adaptive 
training of GMM acoustic models

• Give network cues about source of 
variability [Seltzer 2013]

• Preserve variability in training data

• Works for speaker adaptation [Saon 2013]

𝒗

𝒉𝑁

𝒔

𝒉1

𝒊
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Example 2: noise aware training/adaptation

• Similar motivation to noise-adaptive 
training of GMM acoustic models

• Give network cues about source of 
variability [Seltzer 2013]

• Preserve variability in training data

• Works for speaker adaptation [Saon 2013]

• …and noise adaptation [Li 2014]

𝒗

𝒉𝑁

𝒔

𝒉1

 𝒏
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Example 2: noise aware training/adaptation

• Similar motivation to noise-adaptive 
training of GMM acoustic models

• Give network cues about source of 
variability [Seltzer 2013]

• Preserve variability in training data

• Works for speaker adaptation [Saon 2013]

• …and noise adaptation [Li 2014]

• …at all layers [Xue 2014]

𝒗

𝒉𝑁

𝒔

𝒉1

𝒊
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Summary

• DNNs have had a dramatic impact on speech recognition

• DNNs are incredibly robust to unwanted variability including noise 

• Robustness is achieved through feature invariance

• Invariance is achieved through the combination of large training sets 
and deep networks

• Several areas where performance still suffers and there are 
opportunities for improvement

• (At least) three architectures for incorporating robustness into DNNs

• It’s still early days…lots of exciting work to do! 
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Conclusion

• Is robustness dead? 

The reports of my death have been 
greatly exaggerated. -M. Twain

• Long live robustness!  
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Thank you!
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