SINGLE-CHANNEL reverberant speech recognition using C50 estimation

Introduction

- We present several single-channel approaches to robust speech recognition in reverberant environments based on single-channel estimation of C50
- Our best method outperforms the best baseline of the challenge, reducing the word error rate by 5.7% which corresponds to a 16.8% relative word error rate reduction

Measures of reverberation

• T_{60} , DRR, T_s , D_{50} and C_{50} are parameters used to characterize the effect of reverberation from the room impulse response

	T ₆₀	DRR	T _s	D ₅₀	C ₅₀
Acc.	0.64	0.69	0.79	0.64	0.80
PESQ	0.7	0.83	0.95	0.71	0.96

Correlation of various measures of reverberation with ASR accuracy (Acc.) and speech quality (PESQ)

intrusive estimation of the level of reverberation in speech", *ICASSP 2014.*

¹Nuance Communications Inc. Marlow, UK; ²Department of Electrical and Electronic Engineering, Imperial College London, UK; ³Dept. of Electrical Engineering (ESAT-STADIUS), KU Leuven, Belgium

Single-channel reverberant speech recognition approaches

- Motivation: use a C₅₀ estimator to provide reverberation robustness to automatic speech recognition (ASR)
- Approaches:
 - Include C₅₀ in the input feature vector (**frond-end**)
 - Use C₅₀ to create different reverberant acoustic models and select the most adequate in the recognition stage (back-end)
 - Combination of both previous approaches (hybrid)

Front-end

Techniques:

- 1. Add C_{50} estimate to the 39 dimension MFCC_0_D_A feature vector ($C_{50}FV$)
- 2. Apply heteroscedastic discriminant analysis transformation (HLDA) to reduce the final feature dimension by 1 (i.e. to 39) $(C_{50}HLDA)$

Results:

Method	Clean	Sim.	Real		
$C_{50}FV$	29.01	30.36	56.96		
$C_{50}HLDA$	26.41	28.02	56.12		
WER (%) averages w/o adaptation (CMLLR)					

Back-end

• Techniques:

- Select the optimal acoustic model according to the reverberation level (*MSx*, where *x* represents the
- During training, the acoustic models can be built with overlapped data which provides a smoother

• Results:

transition

Method	Clean	Si			
MS3 (no overlap)	28.00	27			
MS5	23.22	26			
MS8	23.14	26			
MS11	22.07	26			
MS14	22.85	26			
MS18	23.95	26			
WER (%) averages w/o a					

(CMLLR)

Pablo Peso Parada¹, Dushyant Sharma¹, Patrick A. Naylor² and Toon van Waterschoot³

Complete results for our best method (MS11+C ₅₀ HLDA)						
Recordings		MS11+ C ₅₀ HLDA	Clean- cond.	Multi- cond.		
Clean	R.1		20.69	10.50	30.29	
	R.2		20.73	11.51	30.07	
	R.3		20.22	10.81	30.11	
	Avg.		20.55	10.94	30.16	
Sim.	R.1	N.	15.54	15.29	20.60	
		F.	17.10	25.29	21.15	
	R.2	N.	19.63	43.90	23.70	
		F.	33.00	85.80	38.72	
	R.3	N.	25.39	51.95	28.08	
		F.	36.43	88.90	44.86	

	Avg.		24.52	51.86	29.52
	D 1	N.	55.57	88.71	58.44
Real	Π.Ι	F.	52.84	88.31	55.44
	Avg.		54.21	88.51	56.95
WER (%) table w/o adaptation (CMLLR)					

WER (%) table w/o adaptation (CMLLR) where R.X is the room number and N. and F. stand for near and far recordings respectively

Conclusions

- C_{50} estimate successfully applied to reverberant ASR
- Overlapping training data for acoustic model creation gives WER improvement
- Best front end method gives 5.7% WERR
- Best Back-end method gives 11.3% WERR