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Motivation

© Recently, substantial progress made in the field of
reverberant speech signal processing, including

- Single- and multi-channel de-reverberation techniques
- ASR techniques robust to reverberation

® Lack of common evaluation framework

I:> REVERB challenge to provide a common
evaluation framework for both ASR and SE studies



Target acoustic scenarios

- Reverberant

- Moderate stationary noise (—SNR* 20dB)

- 1ch, 2ch and 8ch scenarios

Fig: One of microphone arrays used
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* “S” includes direct signal and early reflections up to 50ms.



The challenge data (1/72)

- Based on Wall Street Journal Cambridge (WSJCAMO) 5K task

- Real recordings (RealData) "1 & simulated data (SimData) 2
(Development and evaluation sets provided)

- RealData for validity assessment in real reverb conditions

- SimData for experiments in various reverb conditions
(A part of SimData simulates RealData in terms of the reverb time)

- Text prompts used for both data were the same.

- Clean and multi-condition (simulated) training data provided

I RealData is available from the LDC catalog as a part of MC-WSJ-AV corpus (since April 2014).
2 Materials required to generate SimData is available on our webpage. The data will soon be available
through the LDC catalog. http://catalog.ldc.upenn.edu/LDC2014S03



The challenge data (2/72)

- Acoustic conditions for SimData and RealData

Reverb time (T,) Distance between speaker and mic
SimData |0.25s , 0.5s, 0.7s* |near: 0.5m
(Room1, 2, 3) far: 2.0m
RealData |Q.7s* near: ~1.0m
far: >2.5m

* SimData room3 simulates RealData
- Sound examples

RealData (far) SimData (Room?2, far)
- \-; B | \-{ - b | \-{ b | &

Observed W {: _ E o:

Clean/Headset



The challenge tasks: ASR and SE

- ASR task
- Evaluation criterion: Word Error Rate (WER)

- SE task

- Objective evaluation criteria

- Intrusive measure (that requires reference clean speech)
- Cepstrum distance (CD)
- Freg-weighted segmental SNR (FWsegSNR)
- Log likelihood ratio (LLR)
- PESQ (optional)

- Non-intrusive measure
- Speech-to-reverb modulation ratio (SRMR)

- Subjective evaluation criteria (web-based MUSHRA test)
- Perceived amount of reverberation
- Overall quality (i.e.,artifacts, distortions, remaining reverb and etc)

- Same test & training data provided for both tasks



Number of submissions

- 27 participants (i.e., # of papers)
- 18 submissions (incl. 49 systems) to the ASR task
- 14 submissions (incl. 25 systems) to the SE task

- Percentage of 1ch, 2ch and 8ch systems in each task -

ASR task SE task




Quick introduction to
the submitted participants’ systems



A wide variety of approaches submitted

-
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Spatial filtering | 1ch SE/FE m
o—

\. Main focus of SE participants -~
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A wide variety of approaches submitted

e N
—> Robust feature
Spatial filtering | 1ch SE/FE | Extraction/ ->| Decoding >
—> normalization
. J

Main focus of ASR participants
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A wide variety of approaches submitted

Main focus of ASR participants

N
— — Robust feature | —>| System )
g Spatial filtering | 1ch SE/FE [¥] Extraction/ | Decoding combination
I " | normalization I
y,
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A wide variety of approaches submitted

System
combination

Main focus of ASR participants

-
o — — Robust feature |-
g Spatial filtering | 1ch SE/FE [1¥] Extraction/ | Decoding
o I " | normalization I
A
Adapt.
.

Submission ranges from 1ch/multi-channel SE algorithms to the ASR

back-end algorithms.




Various approaches (1/74)

E Spatial filtering

/

1ch SE/FE |

Robust feature
Extraction/
normalization

> Decoding

System
combination

(De-reverb

- STFT domain

- Inverse filtering

- Linear prediction

- Correlation shaping
- DOA detection based Beamformer
- Mask-based approach

- Phase-error filter

- Magnitude spec domain

- Estimation of nonnegative RIRs

- De-noising (STFT, auditory-feature domain)
\_ €.8., MVDR, delay-sum, GSC, Mch-WF.

~

4

Adapt.




Various approaches (2/74)

v

E Spatial filtering

1ch SE/FE |

Robust feature
Extraction/
normalization

> Decoding

System
combination

|

[ |

(De-reverb

e.g., Exponential RIR model,
Linear prediction,

- Cepstral domain
e.g., Cepstral smoothing,

- De-noising
\e.g., SS, MMSE-STSA.

- Power/magnitude/auditory spec domain

Non-negative Matrix Fact./Deconv.,
DNN/DRNN/DAE based dereverb

ML-based inverse filter estimation

~

J

4

Adapt.




Various approaches (374)

— — Robust feature | —>| System
E Spatial filtering | 1ch SE/FE [¥] Extraction/ | Decoding combination
I " | normalization I

[ ==

[- Robust features ) W

e.g., PLP, auditory/articulatory based features,

modified cepstral features, 4
i-vector, warped MVDR, etc... Adapt.
- Normalizatoin /

e.g., CMS, VTLN, CMLLR, (H)LDA,
\§ J




Various approaches (4/74)

Spatial filtering

>| 1ch SE/FE [P

Extraction/
normalization

Robust feature

->| System
combination

Decoding

(- Acoustic model )
- GMM
- SGMM g
- DNN ]
- LSTM 3
- Adaptation
- MLLR
- DNN-adaptation
- Training
- Clean/multi-condition
- SAT

- ML/MMI/bMMI

N J

i

(. System combination
- ROVER

- Multi-stream HMM
- Decoding

- Minimum Bayes risk dec.
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Various approaches (4/74)

'_; Spatial filtering R

1ch SE/FE |

Robust feature
Extraction/
normalization

|
v

| Decoding

If you stay with us until the end

you will experience Many different

~approaches tackling the same data

e e

e

4

Adapt.

/

System
combination




Now, the results... ©



Results already publicly available

- Results for the ASR task
http://reverb2014.dereverberation.com/result_asr.html

- Results for the SE task
http://reverb2014.dereverberation.com/result_se.html

Note:

More results (detailed/new/upadated
results) are available in participants’
papers.




Let’s start with the ASR results... ©



WER (%)

ASR results: baselines

100

\

N

HTK-baseline
& (clean training)

% HTK-baseline+CMLLR
(clean training)

HTK-baseline
& (multicondition training)

%~ HTK-baseline+CMLLR
(multicondition training)

Recognition of
unprocessed

0 1ch observation
Near ‘ Far Near ’ Far Near ‘ Far Near‘ Far
Small room Mid. room Large room | Large room

SimData RealData
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ASR results: at a glance

- All the submitted WERS (everything mixed, not a fair comparison)

100

0
Near ‘ Far | Near ’ Far | Near ‘ Far Near‘ Far
Small room Mid. room Large room | Large room

HTK-baseline
& (clean training)

\ HTK-baseline+CMLLR
(clean training)

E—7 : HTK-baseline
ﬁ-_ & (multicondition training)
,, /< . HTK-baseline+CMLLR
£ 1 (multicondition training)

1, Clean/Headset WERs

SimData RealData 73



ASR results analysis with bubble chart

- Relationship between (averaged) WER and # of mic., data and acoust. model

Word error rate (%)
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ASR results analysis with bubble chart

Results per 1ch, 2ch and 8ch systems
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More microphones lead to better performance




ASR results analysis with bubble chart

Training data: “Clean” vs “multi-condition” vs “own data”
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More training data (acoustic variety) lead to better performance
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ASR results analysis with bubble chart

GMM-HMM recognizers vs DNN-HMM recognizers
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- The top-performing systems often employ DNN-HMM

- Resultant performance may differ due to the front-end proc. and the DNN config. etc



ASR results analysis: SimData vs RealData

- Relationship between SimData scores and RealData scores

SimData vs RealData SimData Room3 Far vs RealData

(r=0.96) (r=0.97)
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Very strong correlation between SimData and RealData scores
(Even stronger between SimData Room3 Far and RealData)
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ASR results: Some remarks...

- Strategies often present in the top-performing systems include:
- Some kind of dereverberation (STFT/Amp spec/feature domain)
- Linear Multi-ch filtering (MVDR, DS, etc) often for denoising
- Strong backend (e.g., DNN-HMM recognizer,
sophisticated adaptation,
robust feature extraction,
multi-condition training)
- System combination

- However, it’s hard to tell the exact impact of each SE/ASR technique.
(It's something we should discover at this workshop!)

- Some more works required to achieve the clean/headset
performance.
(E.g., for RealData, the headset WER is roughly 60% of the best
performing system.)



Now, the SE part... ©



- An important question In the SE task-

Most submissions managed to improve the
objective measures (cf. webpage, presentations), but

how about their subjective qualities?
Jo)
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Subjective evaluation: test outline

- MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor) test
- Web-based listening test (not well controlled)

- Test carried out separately for 1ch, 2ch and 8ch systems

- Evaluation conditions (4 conditions): SimData room2 near & far

_ _ RealData near & far
- 2 evaluation metrics

- Perceived amount of reverberation
- Very large/Large/Mid./Small/Very small

- Test materials: clean (hidden ref.) + No proc. + test systems

- Overall quality (i.e.,artifacts, distortions, remaining reverb and etc)
- Bad/Poor/Fair/Good/Excellent

- Test materials: clean (hidden ref) + no proc.
+a 3.5kHz lowpass of the reverberant speech,
+test systems

32



Perceived amount of reverb.

Overall quality

Subjective eval. result : 1ch

Very small .,
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Unprocessed

(Result at RealData far condition)

#of sample; (N)=13
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Perceived amount of reverb.

Overall quality

Subjective eval. result : 1ch
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(Result at RealData far condition)

#of sample; (N)=13
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Subjective eval. result : 1ch

(Result at RealData far condition)
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Perceived amount of reverb.

Overall quality

Subjective eval. result : 1ch

(Result at RealData far condition)

#of samples (N)=13

Verysmall \wpr=—"—"" """~ .
90 —
Small 80 [ ]
70 -
. 60 -
Mid. so - _
40 +
30
Large 5 | .
10 |-
Very [afgge 'O [ aoaigs s oo vegh NergREsss grdies e e vis g in o484 44 WS4 48 oy R Wi SRRy

Exce”ent _'00_ i T T T T T T T T
9 7S il
Good ®[ _ R
60
Fair so - -
40
30
Poor 5L
10
Bof 0 lsgsonrgeenssy oens B ve e nn e e o g ooy i 30 s e
. Y AN N Y I O Y
LCF I EFEFEFEHFEY &
RSP S R DI S S O O S
Q“b .\e} 4”\ 0 & @ ,bé- (.\\e, o @e’,‘- o 06}
F P TS EE T
& \x\cf’

36



Subjective eval. result : 1ch

(Result at RealData far condition)
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Perceived amount of reverb.

Overall quality

Subjective eval.
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Subjective eval. result : 2ch

(Result at RealData far condition)
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Perceived amount of reverb.

Overall quality

Subjective eval. result : 8ch

(Result at RealData far condition)

N=9
Very small 100 F— % ! : ! ' : : : ' ' e
90 -
80 -
70
60
Mid. so
40
30
Large 4|
10

Very |arge 0 A . A A : i A ) A A iR

Small

Excellent

Good
Fair

Poor

Bad

40



Subjective eval. result : 8ch

(Result at RealData far condition)

= Simij
ar trenqy to the 2ch
result
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- Another important gquestion-

How does the subjective score correlate
with the objective measures?

bo)
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SE results: subjective vs objective

- Relationship between the subjective scores and each objective score

Correlation with the scores of the “perceived amount of reverberation” test

CD FWSegSNR LLR SRMR PESQ
Averaged -0.70 0.71 -0.43 0.62 0.77
correlation coeff.
Correlation with the scores of the “overall quality” test
CD FWSegSNR LLR SRMR PESQ
Averaged -0.35 0.39 -0.21 0.12 0.28
correlation coeff.

- Amount of dereverberation can be roughly measured with the objective
measures such as CD, FWSegSNR, PESQ.

- The overall quality is not well captured with the objective measures used.

There may be more appropriate objective measures that correlate well
with the subjective scores.




SE results: Some remarks...

1ch dereverberation is still a challenge task
(Much room to be improved!)

Some multi-channel dereverberation methods are found to be
effective in various conditions.

More appropriate objective quality measure should be considered,
which well coincides with subjective scores.



Conclusions...

- A wide variety of approaches submitted
to both the ASR and the SE tasks

- ASR task

- Most submissions managed to bring improvement
over the baseline systems

- The top-performing systems tend to be quite
sophisticated both in the front-end and the back-end

- SE task

- Most submissions succeeded in dereverberation
- Improvement in the overall quality was not always easy
- Better objective scores maybe necessary



Important questions to be discussed...

- How was the challenge framework? How can we do better?

- Is this challenge already overcome?

- Which directions/methodologies are essential to pursue?

- For improving ASR performance

- For improving SE performance

- Collaboration between SE and ASR necessary?

Let’s discover our own answers during the workshop
and discuss at the panel session ©



Thank you... and now
let’s start the workshop!



Appendix



Perceived amount of reverb.

Overall quality

Intermediate result of the subjective quality test for 1ch systems

Notes:
- It is not recommended to directly compare the numbers
obtained with the different reverberation conditions.

- All mean scores are plotted with their associate 95% confidence intervals.

- About notations
- RT: real-time processing - UB: utterance-batch processing

I Result in SimData room2 near
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Perceived amount of reverb.

Overall quality

Intermediate result of the subjective quality test for 2ch systems

Notes:

- It is not recommended to directly compare the numbers

obtained with the different reverberation conditions.

- All mean scores are plotted with their associate 95% confidence intervals.

- About notations
- RT: real-time processing

- UB: utterance-batch processing

- FB: full-batch processing

}: Result in SimData room2 near

<+ Resultin SimData room2 far

I Result in RealData near

Result in RealData far
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Perceived amount of reverb.

Overall quality

Intermediate result of the subjective quality test for 8ch systems

Notes:
- It is not recommended to directly compare the numbers
obtained with the different reverberation conditions.

- All mean scores are plotted with their associate 95% confidence intervals.

- About notations

- RT: real-time processing - UB: utterance-batch processing

- FB: full-batch processing

I Result in SimData room2 near
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Differential score based on the MUSHRA score: 1ch systems

- The differential scores were calculated by subtracting the scores for the
unprocessed signal from all the scores to remove potential biases [1]. 1

- It is not recommended to directly compare the numbers
obtained with the different reverberation conditions.

Result in SimData room2 far

Notes: :{ Result in SimData room2 near

Result in RealData near

——

- All mean scores are plotted with their associate 95% confidence intervals. ] ResultinReaiDatafor

- Perceived amount of reverb.
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[1] T. Zernicki, et al., "Enhanced coding of high-frequency tonal components in MPEG-D USAC through joint application of ESBR and sinusoidal modeling,”” Proc. ICASSP 2011:



Differential score based on the MUSHRA score: 2ch systems

NOteS: I Result in SimData room2 near
- The differential score was calculated by subtracting the score for the —

unprocessed signal from all the scores to remove potential biases [1]. |

- It is not recommended to directly compare the numbers I T ——
obtained with the different reverberation conditions.
- All mean scores are plotted with their associate 95% confidence intervals. Resultin RealData far

Perceived amount of reverb.
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[1] T. Zernicki, et al., "Enhanced coding of high-frequency tonal components in MPEG-D USAC through joint application of ESBR and sinusoidal modeling,”” Proc. ICASSP 2011:



Differential score based on the MUSHRA score: 8ch systems

NOteS: I Result in SimData room2 near
- The differential score was calculated by subtracting the score for the —

unprocessed signal from all the scores to remove potential biases [1]. |

- It is not recommended to directly compare the numbers I T ——
obtained with the different reverberation conditions.
- All mean scores are plotted with their associate 95% confidence intervals. Resultin RealData far

Perceived amount of reverb.
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[1] T. Zernicki, et al., "Enhanced coding of high-frequency tonal components in MPEG-D USAC through joint application of ESBR and sinusoidal modeling,”” Proc. ICASSP 2011:



Word Error Rate (%)

ASR result for the systems trained on clean data

Details of the ASR results are available at http://www.reverb2014.dereverberation.com/result_asr.html

100.0 . . .
— — 1Baseline : Baseline recognizer (w/ CMLLR), 1ch, FB
90.0 o — — 2 Baseline : Baseline recognizer (w/o CMLLR), 1ch, FB
/ - ——— 3 Cauchi et al. : Baseline recognizer (w/o CMLLR), 8ch, UB
80.0 /\ z ; / — S SR | 4 Cauchi et al. : Baseline recognizer (w/o CMLLR), 1ch, UB
\ / e 4 ~——— 5 Hirch et al. : Baseline recognizer (w/o CMLLR), 1ch, UB
70.0 LIS ==l ; ;
- i ——— 6 Leng et al. : Baseline recognizer (w/ CMLLR), 8ch, UB
60.0 ——— 7 Lopez et al. : Baseline recognizer (w/ CMLLR), 1ch, RT
——— 8 Palomaéki et al. : Baseline recognizer (w/ CMLLR), 1ch, FB
50.0 - 9 Palomaéki et al. : Baseline recognizer (w/o CMLLR), 1ch, FB
——— 10 Veras et al. : Baseline recognizer (w/o CMLLR), 1ch, FB
40.0 ——— 11 Xiao et al. : Baseline recognizer (w/ CMLLR), 8ch, FB
12 Xiao et al. : Baseline recognizer (w/ CMLLR), 2ch, FB
30.0 13 Xiao et al. : Baseline recognizer (w/ CMLLR), 1ch, FB
20.0 - RT: real-time processing
= - UB: utterance-batch processing
10.0 - FB: full-batch processing
0.0
Near = Far | Near Far Near Far Near Far
Small room Mid. room Large room = Large room
SimData RealData
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ASR result for the systems trained on multi-condition data

Details of the ASR results are available at http://www.reverb2014.dereverberation.com/result_asr.html

Word Error Rate (%)

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Near Far

Small room

Near Far

Mid. room

SimData

Near Far

Large room

Near Far

Large room

RealData

1 Baseline : Baseline recognizer (w/ CMLLR), 1ch, FB

2 Baseline : Baseline recognizer (w/o CMLLR), 1ch, FB

3 Alam et al. : Own recognizer, 8ch, FB

4 Alam et al. : Own recognizer, 2ch, FB

5 Alam et al. : Own recognizer, 8ch, UB

6 Alam et al. : Own recognizer, 1ch, FB

7 Alam et al. : Own recognizer, 2ch, UB

8 Alam et al. : Own recognizer, 1ch, UB

9 Astudillo et al. : Baseline recognizer (w/ CMLLR), 8ch, FB

10 Astudillo et al. : Baseline recognizer (w/o CMLLR), 8ch, UB
11 Kallasjoki et al. : Baseline recognizer (w/ CMLLR), 8ch, FB
12 Kallasjoki et al. : Baseline recognizer (w/o CMLLR), 8ch, UB
13 Kallasjoki et al. : Baseline recognizer (w/ CMLLR), 1ch, FB
14 Kallasjoki et al. : Baseline recognizer (w/o CMLLR), 1ch, UB
15 Leng et al. : Own recognizer, 8ch, UB

16 Leng et al. : Baseline recognizer (w/ CMLLR), 8ch, UB

17 Mimura et al. : Own recognizer, 1ch, FB

- 18 Mimura et al. : Own recognizer, 1ch, RT

19 Mitra et al. : Own recognizer, 1ch, FB

- 20 Parada et al. : Baseline recognizer (w/o CMLLR), 1ch, UB

21 Tachioka et al. : Own recognizer, 8ch, UB

22 Tachioka et al. : Own recognizer, 1ch, UB

23 Weninger et al. : Own recognizer, 8ch, UB

24 Weninger et al. : Own recognizer, 1ch, UB

25 Xiao et al. : Own recognizer, 8ch, UB

26 Xiao et al. : Own recognizer, 2ch, UB

27 Xiao et al. : Own recognizer, 1ch, UB

28 Xiong et al. : Baseline recognizer (w/ CMLLR), 1ch, FB
29 Xiong et al. : Baseline recognizer (w/ CMLLR), 1ch, UB

- RT: real-time processing
- UB: utterance-batch processing

- FB: full-batch processing
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Word Error Rate (%)

ASR result for the systems trained on own data

Details of the ASR results are available at http://www.reverb2014.dereverberation.com/result_asr.html
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—— 1 Delcroix et al. : Own recognizer, 8ch, FB
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30.0 H— ~——— 6 Delcroix et al. : Own recognizer, 1ch, UB
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> / ———7 Feng et al. : Own recognizer, 8ch, FB
20.0
——— 8 Geiger et al. : Own recognizer, 8ch, UB
9 Geiger et al. : Own recognizer, 1ch, UB
10.0
——— 10 Lopez et al. : Baseline recognizer (w/ CMLLR), 1ch, RT
11 Wang et al. : Own recognizer, 2ch, UB
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- FB: full-batch processing
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