

http://reverb2014.dereverberation.com/

Summary of the REVERB challenge

Keisuke Kinoshita,
Marc Delcroix,
Takuya Yoshioka,
Tomohiro Nakatani
NTT Corporation

Emanuel Habëts
International AudioLabs Erlangen

Reinhold Haeb-Umbach, Volker Leutnant Paderborn Univ.

Armin Sehr
Beuth Univ. of
Applied Sciences Berlin

Walter Kellermann, Roland Maas Univ. of Erlangen-Nuremberg Sharon Gannot

Bar-Ilan Univ.

Bhiksha Raj Carnegie Mellon Univ.

Outline

- Motivation and design of the REVERB challenge
- Summary of the participants' systems
- Result summary
 - The ASR results
 - The SE (Speech Enhancement) results
- Concluding remarks

Motivation

- © Recently, substantial progress made in the field of reverberant speech signal processing, including
 - Single- and multi-channel de-reverberation techniques
 - ASR techniques robust to reverberation
- Lack of common evaluation framework

REVERB challenge to provide a common evaluation framework for both ASR and SE studies

Target acoustic scenarios

- Reverberant
- Moderate stationary noise (~SNR* 20dB)
- 1ch, 2ch and 8ch scenarios

Fig: One of microphone arrays used

^{* &}quot;S" includes direct signal and early reflections up to 50ms.

The challenge data (1/2)

- Based on Wall Street Journal Cambridge (WSJCAMO) 5K task
- Real recordings (RealData) *1 & simulated data (SimData) *2 (Development and evaluation sets provided)
 - RealData for validity assessment in real reverb conditions
 - SimData for experiments in <u>various</u> reverb conditions (A part of SimData simulates RealData in terms of the reverb time)
 - Text prompts used for both data were the same.
- Clean and multi-condition (simulated) training data provided

^{*1} RealData is available from the LDC catalog as a part of MC-WSJ-AV corpus (since April 2014).

^{*2} Materials required to generate SimData is available on our webpage. The data will soon be available through the LDC catalog. http://catalog.ldc.upenn.edu/LDC2014S03

The challenge data (2/2)

- Acoustic conditions for SimData and RealData

	Reverb time (T ₆₀)	Distance between speaker and mic	
SimData	0.25s , 0.5s, 0.7s*	near: 0.5m	
	(Room1, 2, 3)	far: 2.0m	
RealData	0.7s*	near: ~1.0m	
		far: >2.5m	

^{*} SimData room3 simulates RealData

- Sound examples

	RealData (far)		SimData (Room2, far)	
	Male	Female	Male	Female
Clean/Headset		7000	1000	
Observed	7000	7000	5000	5000

The challenge tasks: ASR and SE

- ASR task
 - Evaluation criterion: Word Error Rate (WER)
- SE task
 - Objective evaluation criteria
 - Intrusive measure (that requires reference clean speech)
 - Cepstrum distance (CD)
 - Freq-weighted segmental SNR (FWsegSNR)
 - Log likelihood ratio (LLR)
 - PESQ (optional)
 - Non-intrusive measure
 - Speech-to-reverb modulation ratio (SRMR)
 - Subjective evaluation criteria (web-based MUSHRA test)
 - Perceived amount of reverberation
 - Overall quality (i.e., artifacts, distortions, remaining reverb and etc)
- Same test & training data provided for both tasks

Number of submissions

- 27 participants (i.e., # of papers)
 - 18 submissions (incl. 49 systems) to the ASR task
 - 14 submissions (incl. 25 systems) to the SE task

- Percentage of 1ch, 2ch and 8ch systems in each task -

Quick introduction to the submitted participants' systems

Submission ranges from 1ch/multi-channel SE algorithms to the ASR back-end algorithms.

Various approaches (1/4)

Various approaches (2/4)

Various approaches (3/4)

Various approaches (4/4)

Various approaches (4/4)

Now, the results... ©

Results already publicly available

- Results for the ASR task
 http://reverb2014.dereverberation.com/result_asr.html
- Results for the SE task
 http://reverb2014.dereverberation.com/result_se.html

Note:

More results (detailed/new/updated results) are available in participants' papers.

Let's start with the ASR results... ©

ASR results: baselines

ASR results: at a glance

- All the submitted WERs (everything mixed, not a fair comparison)

- Relationship between (averaged) WER and # of mic., data and acoust. model

The size of a circle indicates the # of systems in the corresponding category

Results per 1ch, 2ch and 8ch systems

More microphones lead to better performance

More training data (acoustic variety) lead to better performance

- The top-performing systems often employ DNN-HMM
- Resultant performance may differ due to the front-end proc. and the DNN config. etc $_{\scriptscriptstyle 27}$

ASR results analysis: SimData vs RealData

- Relationship between SimData scores and RealData scores

ASR results: Some remarks...

- Strategies often present in the top-performing systems include:
 - Some kind of dereverberation (STFT/Amp spec/feature domain)
 - Linear Multi-ch filtering (MVDR, DS, etc) often for denoising
 - Strong backend (e.g., DNN-HMM recognizer, sophisticated adaptation, robust feature extraction, multi-condition training)
 - System combination
- However, it's hard to tell the exact impact of each SE/ASR technique. (It's something we should discover at this workshop!)
- Some more works required to achieve the clean/headset performance.
 - (E.g., for RealData, the headset WER is roughly 60% of the best performing system.)

Now, the SE part... ©

- An important question in the SE task-

Most submissions managed to improve the objective measures (cf. webpage, presentations), but how about their subjective qualities?

Subjective evaluation: test outline

- MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor) test
- Web-based listening test (not well controlled)
- Test carried out separately for 1ch, 2ch and 8ch systems
- Evaluation conditions (4 conditions): SimData room2 near & far RealData near & far
- 2 evaluation metrics
 - Perceived amount of reverberation
 - Very large/Large/Mid./Small/Very small
 - Test materials: clean (hidden ref.) + No proc. + test systems
 - Overall quality (i.e., artifacts, distortions, remaining reverb and etc)
 - Bad/Poor/Fair/Good/Excellent
 - Test materials: clean (hidden ref) + no proc. +a 3.5kHz lowpass of the reverberant speech, +test systems

Subjective eval. result: 1ch

Subjective eval. result: 2ch

Subjective eval. result: 2ch

Subjective eval. result: 8ch

Subjective eval. result: 8ch

- Another important question-

How does the subjective score correlate with the objective measures?

SE results: subjective vs objective

- Relationship between the subjective scores and each objective score

Correlation with the scores of the "perceived amount of reverberation" test

	CD	FWSegSNR	LLR	SRMR	PESQ
Averaged correlation coeff.	-0.70	0.71	-0.43	0.62	0.77

Correlation with the scores of the "overall quality" test

	CD	FWSegSNR	LLR	SRMR	PESQ
Averaged correlation coeff.	-0.35	0.39	-0.21	0.12	0.28

- Amount of dereverberation can be roughly measured with the objective measures such as CD, FWSegSNR, PESQ.
- The overall quality is not well captured with the objective measures used.

There may be more appropriate objective measures that correlate well with the subjective scores.

SE results: Some remarks...

- 1ch dereverberation is still a challenge task (Much room to be improved!)
- Some multi-channel dereverberation methods are found to be effective in various conditions.
- More appropriate objective quality measure should be considered, which well coincides with subjective scores.

Conclusions...

- A wide variety of approaches submitted to both the ASR and the SE tasks
- ASR task
 - Most submissions managed to bring improvement over the baseline systems
 - The top-performing systems tend to be quite sophisticated both in the front-end and the back-end
- SE task
 - Most submissions succeeded in dereverberation
 - Improvement in the overall quality was not always easy
 - Better objective scores maybe necessary

Important questions to be discussed...

- How was the challenge framework? How can we do better?
- Is this challenge already overcome?
- Which directions/methodologies are essential to pursue?
 - For improving ASR performance
 - For improving SE performance
- Collaboration between SE and ASR necessary?

Let's discover our own answers during the workshop and discuss at the panel session ©

Thank you... and now let's start the workshop!

Appendix

Intermediate result of the subjective quality test for 1ch systems

Notes:

- It is not recommended to directly compare the numbers obtained with the different reverberation conditions.
- All mean scores are plotted with their associate 95% confidence intervals.
- About notations
 - RT: real-time processing UB: utteran
- UB: utterance-batch processing FB: full-batch processing

Intermediate result of the subjective quality test for 2ch systems

Intermediate result of the subjective quality test for 8ch systems

Differential score based on the MUSHRA score: 1ch systems

Notes:

- The differential scores were calculated by subtracting the scores for the unprocessed signal from all the scores to remove potential biases [1].
- It is not recommended to directly compare the numbers obtained with the different reverberation conditions.
- All mean scores are plotted with their associate 95% confidence intervals.

Differential score based on the MUSHRA score: 2ch systems

Notes:

- The differential score was calculated by subtracting the score for the unprocessed signal from all the scores to remove potential biases [1].
- It is not recommended to directly compare the numbers obtained with the different reverberation conditions.

- All mean scores are plotted with their associate 95% confidence intervals.

Differential score based on the MUSHRA score: 8ch systems

Notes:

- The differential score was calculated by subtracting the score for the unprocessed signal from all the scores to remove potential biases [1].
- It is not recommended to directly compare the numbers obtained with the different reverberation conditions.

- All mean scores are plotted with their associate 95% confidence intervals.

ASR result for the systems trained on clean data

Details of the ASR results are available at http://www.reverb2014.dereverberation.com/result_asr.html

ASR result for the systems trained on multi-condition data

Details of the ASR results are available at http://www.reverb2014.dereverberation.com/result_asr.html

ASR result for the systems trained on own data

Details of the ASR results are available at http://www.reverb2014.dereverberation.com/result_asr.html

