
p2.1: Acoustic Scene Aware Dereverberation using 2-channel spectral enhancement for REVERB Challenge Xiaofei WANG, Yanmeng GUO, Xi YANG, Qiang FU and Yonghong YAN Institute of Acoustics, Chinese Academy of Sciences

- amount and target speech distortion.

Main Idea

System Description

Results(SE Task)

- Acoustic scene classification: based on coherence analysis.
- Selection of spectral enhancement: based on the acoustics scene.
- Eliminate the interference as much as possible while keeping the speech distortion always in a low level.

Back-end ASR

Clean+noEnh: "clean-condition" HMMs without dereverberation **Clean+Enh:** "clean-condition" HMMs with Table 1. Cepstral distance of test SimData before and after dereverberation.

	Cepstral dis								
Room	m	ean	me	dian					
	org	enh	org	enh					
room1_near	1.99	1.96	1.68	1.69					
room1_far	2.67	2.78	2.38	2.65					
room2_near	4.63	3.52	4.24	3.35					
room2_far	5.21	4.51	5.04	4.25					
room3_near	4.38	3.57	4.04	3.43					
room3_far	4.96	4.42	4.73	4.18					
average	3.97	3.46	3.69	3.26					

Table 4. Frequency-weighted segmental SNR of test SimData before and after dereverberation.

	FWSegSNR in dB							
Room	m	lean	me	dian				
	org	enh	org	enh				
room1_near	8.12	9.86	10.72	10.99				
room1_far	6.68	8.56	9.24	8.72				
room2_near	3.35	7.19	5.52	8.76				
room2_far	1.04	4.29	1.77	6.43				
room3_near	2.27	5.59	4.21	6.82				
room3_far	0.24	3.04	0.89	4.78				
average	3.62	6.42	5.39	7.75				

System Description

Spectral Enhancement

Motivation:

- Robust to both noise and reverberation
- Low calculation complexity

General Form:

 $|\widehat{S}(l,k)| = G(l,k)|\widehat{X}(l,k)|$

2-channel Case

Motivation:

- Basic topology of all microphone arrays
- Low requirement for both hardware and software

dereverberation

Multi+noEnh: "multi-condition" HMMs without dereverberation

Multi+Enh: "multi-condition" HMMs with dereverberation

ReTrn+Enh: re-trained "multi-condition" HMMs with dereverberation

Adapt to the potential distortion in the front-end enhanced signals.

Algorithm

Algorithm 1 Strategy of Spectral enhancement.

1: if $\hat{\epsilon} > \sigma_1$ then

- $G(l,k)(FFT_bins/3:FFT_bins) = 1$
- $G(l,k)(1:FFT bins/3-1) = max(G_{late}, G_{odr})$

Table 2 . SRMR of test SimData before and after dereverberation.

	SRMR (only mean used)						
Room	me	an	mec	lian			
	org	enh	org	enh			
room1_near	4.50	4.13	_	_			
room1_far	4.58	4.53	_	_			
room2_near	3.74	3.88	_	_			
room2_far	2.97	4.25	_	_			
room3_near	3.57	3.80	_	_			
room3_far	2.73	3.84	_	_			
average	3.68	4.07	_	_			

Table 3 . Log likelihood ratio of test SimData before and after dereverberation.

3: $G(l,k)(1:FFT_bins/3-1) = max(G_{late}, G_{cdr})$ 4: $\hat{X}(l,k) = X_0$	Log likelihood ratio									SRMR (only mean used)						
5: else if $\hat{\epsilon} > \sigma_2$ then	Roon	Room		mean		median		R		Room		mean		median		
6: $G(l,k) = \max(G_{late}, G_{cdr})$		0	rg	enh	org	en	h				org		enh	org	enł	1
7: $\hat{X}(l,k) = X_{DSB}$	room1_nea	ar 0.	.35	0.35	0.33	0.3	33		room1_	near	3.1	, 	4.44	_		
8: else if $\hat{\epsilon} > \sigma_3$ then	room1_far	· 0.	.38	0.45	0.35	0.4	42		room1_f		3.1		4.67	_		
9: $G(l,k) = \min(G_{late}, G_{cdr})$	room2_nea	ar 0.	.49	0.56	0.40	0.4	49		average		3.1	8	4.55			
10: $X(l,k) = X_{DSB}$	room2_far	· 0.	.75	0.78	0.63	0.7	71]
11: else 12: $C(l,k) = C_{l-1}C_{l-1}$	room3_nea	ar 0.	.65	0.65	0.59	0.6	50									
12: $G(l,k) = G_{late}G_{cdr}$ 13: $\hat{X}(l,k) = X_{DSB}$	room3_far	· 0.	.84	0.80	0.76	0.7	75									
14: end if	average	0.	.58	0.60	0.51	0.5	55									
Conclusion and Discussion					Do	eul	tel	ΛС	РТ	asl						
Conclusion and Discussion					RE	5 UI	19/1			a 51						
 An acoustic scene aware technique is 								W	ord erro	or rate(%)					
 An acoustic scene aware technique is 							Si	Wa		or rate(%)			R	ealData	a
 An acoustic scene aware technique is proposed to make dereverberation 	Test 1	Data	Ro	oom 1,2,	,3	Ave.	Si Rooi	imDat			%) Roor	m 3	Ave.	Roor		a Ave.
proposed to make dereverberation	Test 1	Data		oom 1,2, Clean	,3	Ave.		imDat m 1	a	m 2			Ave.		m 1	
roposed to make dereverberation robust to different conditions	Test I Clean+	Data		Clean	,3 12.13	Ave. 12.48	Rooi Near	imDat n 1 Far	ta Roo Near	m 2	Roor Near	Far		Roor Near	m 1 Far	Ave.
proposed to make dereverberation				Clean			Root Near 18.06 14.81	imDat n 1 Far 25.38 18.86	ta Roo Near 42.98 5 24.63	m 2 Far 82.20 64.58	Roor Near 53.54 33.77	Far 88.04 78.42	51.68 39.16	Roor Near 89.72 82.31	m 1 Far 87.34 80.76	Ave. 88.53 81.53
 proposed to make dereverberation robust to different conditions For SE task, objective indexes 	Clean+	nocmllr		Clean			Root Near 18.06 14.81 17.43	imDat n 1 Far 25.38 18.86 25.25	ta Roo Near 42.98 5 24.63 5 27.85	m 2 Far 82.20 64.58 49.48	Roor Near 53.54 33.77 36.51	Far 88.04 78.42 65.94	51.68 39.16 37.06	Roor Near 89.72 82.31 73.91	m 1 Far 87.34 80.76 71.34	Ave. 88.53 81.53 72.62
 proposed to make dereverberation robust to different conditions For SE task, objective indexes illustrate the improvement on speech 	Clean+ noEnh	nocmllr cmllr		Clean			Root Near 18.06 14.81 17.43 14.47	imDat n 1 Far 25.38 18.86 25.25 19.47	ta Roo Near 42.98 24.63 27.85 21.19	m 2 Far 82.20 64.58 49.48 34.86	Roor Near 53.54 33.77 36.51 27.16	Far 88.04 78.42 65.94 50.50	51.68 39.16 37.06 27.93	RootNear89.7282.3173.9162.66	m 1 Far 87.34 80.76 71.34 61.58	Ave. 88.53 81.53 72.62 62.12
 proposed to make dereverberation robust to different conditions For SE task, objective indexes 	Clean+ noEnh Clean+ Enh Multi+	nocmllr cmllr nocmllr	12.84 - - - 30.29	Clean 12.49 - - 30.07	12.13 - - 30.11	12.48 - - 30.15	Root Near 18.06 14.81 17.43 14.47 20.60	imDat n 1 Far 25.38 18.86 25.25 19.47 21.15	ta Roo Near 42.98 24.63 27.85 21.19 23.70	m 2 Far 82.20 64.58 49.48 34.86 38.72	Roor Near 53.54 33.77 36.51 27.16 28.08	Far 88.04 78.42 65.94 50.50 44.86	51.68 39.16 37.06 27.93 29.51	RootNear89.7282.3173.9162.6658.45	m 1 Far 87.34 80.76 71.34 61.58 55.44	Ave. 88.53 81.53 72.62 62.12 56.94
 proposed to make dereverberation robust to different conditions For SE task, objective indexes illustrate the improvement on speech 	Clean+ noEnh Clean+ Enh	nocmllr cmllr nocmllr cmllr	12.84 - - - 30.29	Clean 12.49 - -	12.13 - - 30.11	12.48 - - 30.15	RootNear18.0614.8117.4314.4720.6016.23	imDat m 1 Far 25.38 18.86 25.25 19.47 21.15 18.71	Roo Near 42.98 24.63 27.85 21.19 23.70 20.50	m 2 Far 82.20 64.58 49.48 34.86 38.72 32.47	Roor Near 53.54 33.77 36.51 27.16 28.08 24.76	Far 88.04 78.42 65.94 50.50 44.86 38.88	51.68 39.16 37.06 27.93 29.51 25.25	RootNear89.7282.3173.9162.6658.4550.14	m 1 Far 87.34 80.76 71.34 61.58 55.44 47.57	Ave. 88.53 81.53 72.62 62.12 56.94 48.85
 proposed to make dereverberation robust to different conditions For SE task, objective indexes illustrate the improvement on speech signal quality For ASR task, when it is combined with 	Clean+ noEnh Clean+ Enh Multi+	nocmllr cmllr nocmllr cmllr nocmllr	12.84 - - - 30.29	Clean 12.49 - - 30.07	12.13 - - 30.11	12.48 - - 30.15	RootNear18.0614.8117.4314.4720.6016.2323.64	imDat n 1 Far 25.38 18.86 25.25 19.47 21.15 18.71 36.46	Roo Near 42.98 24.63 27.85 21.19 23.70 27.72	m 2 Far 82.20 64.58 49.48 34.86 38.72 32.47 37.69	RootNear53.5433.7736.5127.1628.0824.7634.00	Far 88.04 78.42 65.94 50.50 44.86 38.88 45.85	51.68 39.16 37.06 27.93 29.51 25.25 34.22	RootNear89.7282.3173.9162.6658.4550.1459.95	m 1 Far 87.34 80.76 71.34 61.58 55.44 47.57 59.49	Ave. 88.53 81.53 72.62 62.12 56.94 48.85 59.72
 proposed to make dereverberation robust to different conditions For SE task, objective indexes illustrate the improvement on speech signal quality 	Clean+ noEnh Clean+ Enh Multi+ noEnh Multi+ Enh	nocmllr cmllr nocmllr cmllr nocmllr cmllr	12.84 - - - 30.29	Clean 12.49 30.07 15.52	12.13 - - 30.11 15.70 - -	12.48 - - 30.15 15.73 - -	RootNear18.0614.8117.4314.4720.6016.2323.6416.93	imDat n 1 Far 25.38 18.86 25.25 19.47 21.15 18.71 36.46 20.04	Roo Near 42.98 24.63 27.85 21.19 23.70 20.50 19.91	m 2 Far 82.20 64.58 49.48 34.86 38.72 32.47 37.69 26.84	RootNear53.5433.7736.5127.1628.0824.7634.0023.95	Far 88.04 78.42 65.94 50.50 44.86 38.88 45.85 34.33	51.68 39.16 37.06 27.93 29.51 25.25 34.22 23.66	RootNear89.7282.3173.9162.6658.4550.1459.9544.87	m 1 Far 87.34 80.76 71.34 61.58 55.44 47.57 59.49 45.81	Ave. 88.53 81.53 72.62 62.12 56.94 48.85 59.72 45.34
 proposed to make dereverberation robust to different conditions For SE task, objective indexes illustrate the improvement on speech signal quality For ASR task, when it is combined with 	Clean+ noEnh Clean+ Enh Multi+ noEnh Multi+	nocmllr cmllr nocmllr cmllr nocmllr cmllr nocmllr	12.84 - - - 30.29	Clean 12.49 30.07 15.52	12.13 - - 30.11 15.70 - -	12.48 - - 30.15 15.73 - - 16.27	RootNear18.0614.8117.4314.4720.6016.2323.6416.9315.64	imDat n 1 Far 25.38 18.86 25.25 19.47 21.15 18.71 36.46 20.04 18.76	Roo Near 42.98 24.63 27.85 21.19 23.70 20.50 27.72 19.91 19.79	m 2 Far 82.20 64.58 49.48 34.86 38.72 32.47 37.69	Root Near 53.54 33.77 36.51 27.16 28.08 24.76 34.00 23.95 24.01	Far 88.04 78.42 65.94 50.50 44.86 38.88 45.85 34.33 35.15	51.68 39.16 37.06 27.93 29.51 25.25 34.22 23.66 23.64	RootNear89.7282.3173.9162.6658.4550.1459.9544.8749.50	m 1 Far 87.34 80.76 71.34 61.58 55.44 47.57 59.49 45.81 49.49	Ave. 88.53 81.53 72.62 62.12 56.94 48.85 59.72 45.34 49.49

Table 5. PESQ of test SimData before and after dereverberation.

	PESQ (only mean used)							
Room	me	ean	mee	dian				
	org	enh	org	enh				
room1_near	2.14	2.09	-	_				
room1_far	1.61	1.64	_	_				
room2_near	1.40	1.69	-	_				
room2_far	1.19	1.36	_	_				
room3_near	1.37	1.53	-	-				
room3_far	1.17	1.23	-	_				
average	1.48	1.59	_	_				

Table 6. SRMR of test RealData before and after enhancement

	SRMR (only mean used)							
Room	m	ean	median					
	org	enh	org	enh				
room1_near	3.17	4.44	-	_				
room1_far	3.19	4.67	-	-				
average	3.18	4.55	_	-				

 It is ideal to fulfill the dereverberation task based on 2 sensors, just like what the human auditory system

Acoustic Scene Awareness Motivation:

- Reflection condition: high or low
- Speaker-mic distance: near or far
- A controller is needed to better selection of spectral enhancement method since different spectral enhancement methods shows superiority in different kinds of reverberant environment

Pre-processing

Motivation:

- DOA of target signal is unknown
- An alignment filter should be designed for Beamforming
- VVER

This work is partially supported by the National Natural Science Foundation of China (Nos. 10925419, 90920302, 61072124, 11074275, 11161140319, 91120001, 61271426), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA06030100, XDA06030500), the National 863 Program (No. 2012AA012503) and the CAS Priority Deployment Project (No. KGZD-EW-103-2).

Presented at the REVERB Workshop, 10 May, 2014. Florence, Italy.