The MERL/MELCO/TUM system for the REVERB Challenge using Deep Recurrent Neural Network Feature Enhancement

<u>Felix Weninger^{1,2}, Shinji Watanabe¹, Jonathan Le Roux¹, John R. Hershey¹, Yuuki Tachioka³, Jürgen Geiger², Björn Schuller², Gerhard Rigoll²</u>

¹ Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
 ² MMK, Technische Universität München, Munich, Germany
 ³ IT R&D Center, Mitsubishi Electric Corporation, Kamakura, Japan

Florence, Italy May 10, 2014

Motivation

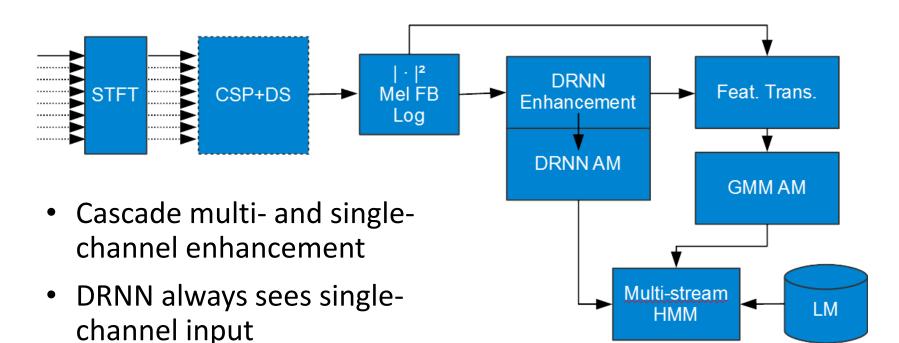
- Deep recurrent neural network (DRNN) feature enhancement: promising for reverberated ASR
- Potential performance improvement by additional:
 - Discriminative GMM training
 - DRNN acoustic modeling
 - Integration of multi- and single-channel enhancement

F. Weninger et al., Deep Recurrent De-Noising Auto-Encoder and Blind De-Reverberation for Reverberated Speech Recognition, ICASSP 2014

Y. Tachioka et al., Effectiveness of discriminative training for recognition of reverberated and noisy speech, ICASSP 2013

J. Geiger et al., Memory-Enhanced Recurrent Neural Networks and NMF for Robust ASR, T-ASLP 2014

System Overview



- Multi-stream HMM decoding
 - Cf. CHiME Challenge (Geiger et al., T-ASLP, 2014)

Multi-Channel Processing

 Cross-spectrum phase (CSP) + delay-and-sum (DS) beam-forming in the spectral domain

$$\tau_{1,m} = \arg \max \mathcal{S}^{-1} \left[\frac{\mathbf{z}_t(1) \odot \mathbf{z}_t(m)^*}{|\mathbf{z}_t(1)| |\mathbf{z}_t(m)|} \right]$$

$$\hat{\mathbf{z}}_t = \sum_m \mathbf{z}_t(m) \odot \exp(-\jmath \boldsymbol{\omega} \tau_{1,m})$$

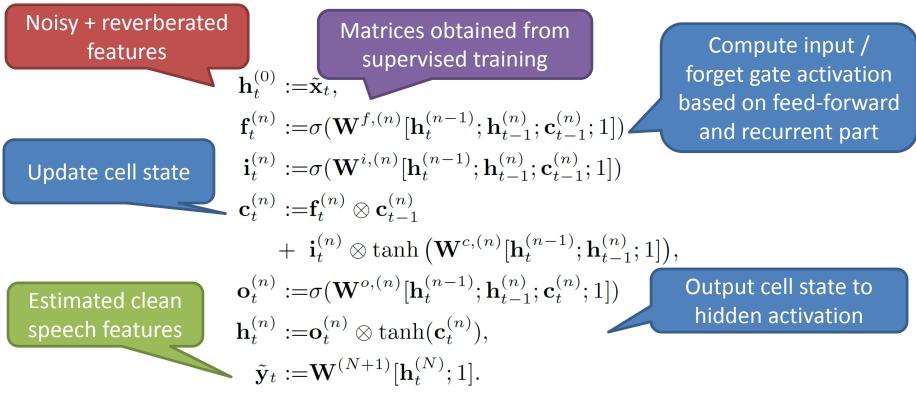
- Peak-hold process
- Noise component suppression

Single-channel DRNN-DAE enhancement

- Enhancement by de-noising auto-encoder (DAE)
 - Supervised training of mapping from reverberated and noisy to clean speech features (Log Mel)
 - Trained on simulated parallel data does it generalize?
- Implement DAE as deep recurrent neural network (RNN) with Long Short-Term Memory (LSTM) architecture
- Successful in ASR feature enhancement task
 - Outperforms DNN on CHIME
- LSTM-RNN:
 - Adaptive context size
 - Models output dynamics

(Weninger et al., CSL, 2014)

LSTM de-reverberation



- Can learn long-term dependencies without blowing up input layer
 → More concise model
- Context size depends on history → useful for varying acoustic conditions

DAE training

- Training tasks:
 - 1-channel system: Map REVERB multi-condition training set to WSJCAMO clean training set
 - 8-channel system: Map CSP+DS processed REVERB multicondition training set to WSJCAM0 clean tr. set
- Dimension:
 - 1-channel: 3 bidirectional LSTM layers w/ 128 units
 - 8-channel: 2 bidirectional LSTM layers w/ 128 units
- Stochastic gradient descent with momentum and input noise
- Parallel GPU training in mini-batch learning
 - CURRENNT toolkit (http://currennt.sf.net)

Baseline recognizer

- ASR features:
 - 23 Mel filterbank outputs
 - 13 MFCCs (0-12)
 - Mean normalized Log Mel features \rightarrow gain-independent
- Re-implemented REVERB HTK baseline in Kaldi toolkit
- Improvements:
 - LDA-STC (MLLT) instead of $\Delta + \Delta \Delta$
 - Feature-level context
 - Basis fMLLR adaptation *per utterance*
 - Similar or better performance than fMLLR with less adaptation data

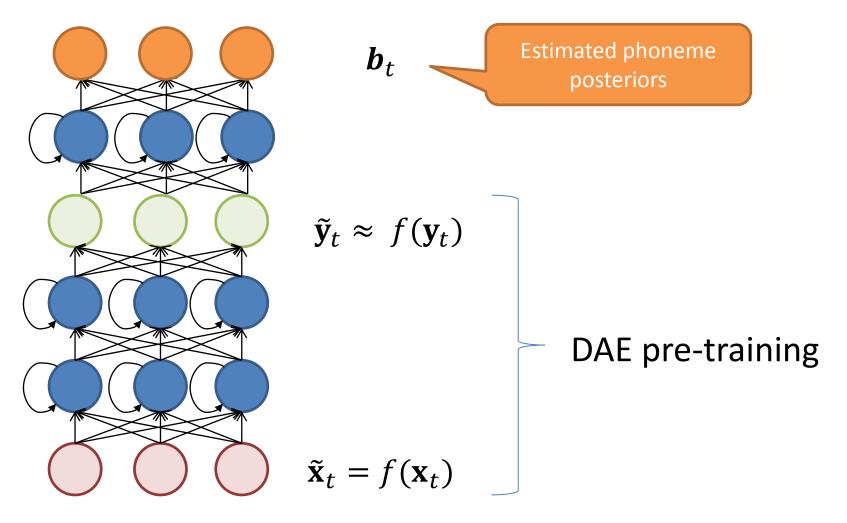
Baseline improvements (2)

- Discriminative training of GMM-HMM
 - Boosted MMI criterion:

$$f_b(\lambda) = \log \sum_u \frac{p(\mathbf{X}^u | \lambda, h^{w_u^*})^{\alpha} p_L(w_u^*)}{\sum_{w_u} p(\mathbf{X}^u | \lambda, h^{w_u})^{\alpha} p_L(w_u) e^{-b\varrho(w_u, w_u^*)}}$$

- Tri-gram language model
- Minimum Bayes Risk (MBR) decoding
 - Don't choose hypothesis far from the N-best
 - Minimize expected WER instead of SER (in case of MAP)

DRNN acoustic modeling



Multi-Stream DRNN+GMM-HMM

- Tandem decoding approach
- Discrete DRNN phoneme prediction:

$$b_t = \arg\max_i \tilde{y}_{t,i}$$

• Multi-stream emission probability:

$$p(\mathbf{x}_t, b_t | s_t) = p(\mathbf{x}_t | s_t)^{\mu} p(b_t | s_t)^{2-\mu}$$

- Stream weight μ for GMM likelihood of acoustic feature vector \mathbf{x}_t
- DRNN phoneme confusions modeled by $p(b_t/s_t)$

5/10/14

Baseline ASR results

	SimData	RealData	
REVERB baselines (HTK)			
Clean	51.86	88.38	
Multi-condition	28.94	52.29	
fMLLR	25.16	47.23	
Our baselines (Kaldi)			
Clean	51.23	88.81	
Multi-condition	28.62	54.04	
Basis fMLLR	23.60	47.14	

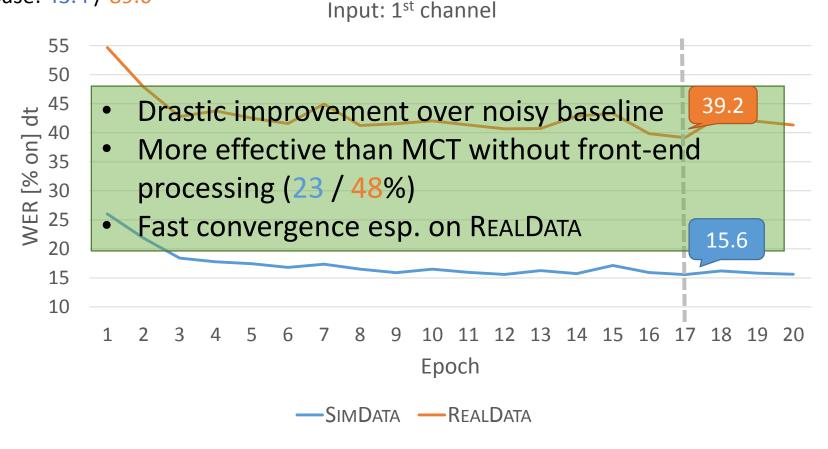
Baseline ASR results (2)

	SimData	REALDATA
Our baselines (Kaldi)		
Clean	51.23	88.81
Multi-condition	28.62	54.04
Basis fMLLR	23.60	47.14
+LDA-STC	19.42	41.42
+DT	15.53	40.60
+Tri-gram	12.28	31.05
+MBR	12.05	30.73

Kaldi recipe available on REVERB homepage

DRNN enhancement training epochs

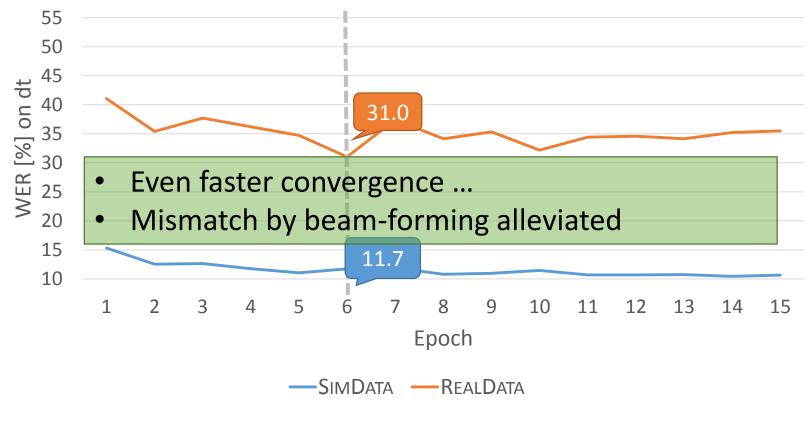
Clean recognizer, LDA-STC, ML trained, Trigram Base: 43.4 / 89.6



DRNN enhancement training epochs

Clean recognizer, LDA-STC, ML trained, Trigram Base: 24.9 / 72.2

Input: CSP+DS (Channels 1-8)



Enhancement results: Clean training w/ fMLLR adaptation

# channels	DRNN enh.?	SimData	RealData
1	×	33.2	77.8
1	\checkmark	14.0	35.0
8	×	16.4	54.5
8	\checkmark	9.7	26.5
Ora	acle	6.0	10.1
Best result without using the multi- condition set!			

Enhancement results: bMMI MCT recognizer

- Tuning of search parameters
- Discriminative training (booste (processed) multi-condition se

Best result with singlechannel front-end

# channels	DRNN enh.?	SimData	RealData
1	×	11.2	30.8
1	\checkmark	10.4	26.3
8	×	7.5	23.9
8	\checkmark	7.7	21.4
Ora	acle	5.1	9.9

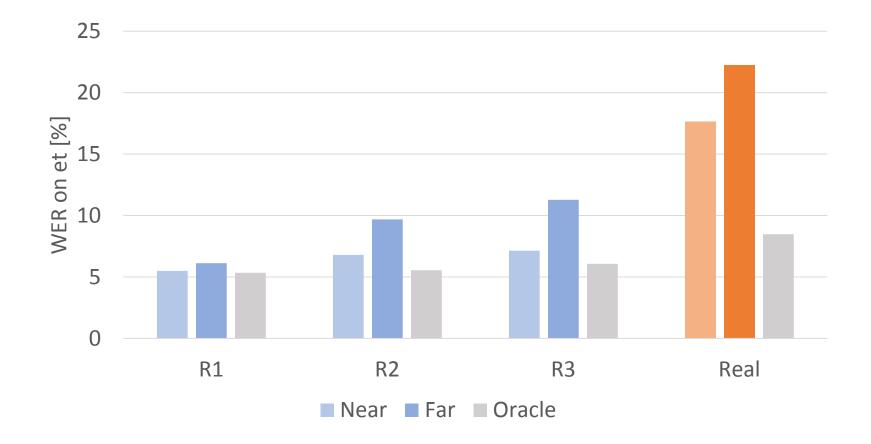
Test set evaluation: Enhancement, GMM-HMM AM

WER [%]	SimData	REALDATA
1-channel systems		
REVERB baseline	25.3	49.2
GMM-HMM	11.7	30.9
+ DRNN enh.	10.2	26.7
8-channel system		
+ CSP-DS	7.8	20.1

Test set evaluation: DRNN+GMM-HMM AM

WER [%]	SimData	RealData
DRNN+GMM-HMM	7.28	21.69
GMM-HMM w/ DRNN enh.	7.75	20.09
ROVER	7.02	19.61
GMM-HMM w/ Oracle enh.	5.65	8.47

Results with GMM-HMM and DRNN enhancement by room



Conclusions and Outlook

- Supervised training of de-reverberation with RNN is effective for ASR
 - Works on real data
 - Particularly promising for single-channel scenario
 - Can be efficiently combined with beam-forming
 - Some over-fitting observed (less than RNN-AM)
- Future work:
 - Effectiveness of supervised training for multi-channel de-reverberation
 - Use phase information

Thank you.

felix@weninger.de

