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Main contribution

I We propose a novel speech enhancement algorithm for removing
reverberation and noise from recorded speech data.

I Compared to conventional methods, our approach results in:
. Substantial improvement in PESQ and other objective metrics.
. Fewer artifacts in informal listening.

I Our method effectively increases the analysis window duration that
can be used for voiced speech.
. We extend the coherence time, which is the duration over which an

analysis method is coherent with the signal.
. Conventional methods assume a speech coherence time of 10-30 ms;

we extend this time to 128 ms.

System block diagram

Input is M channels of reverberant,
noisy speech:
ym[n] = hm[n] ∗ s[n] + v[n].

Output is estimate of clean speech:

y1:M[n]
Beamforming

M = 1: Do nothing
M = 2: Delay-and-sum
M = 8: MVDR

STFChT?

(vs STFT)
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STFChT?

(or STFT)

ŝ[n]

Blindly
estimate T60

Suppress reverberation
and noise using

Habets MMSE-LSA [1]
enhancement

?“Short-time fan-chirp transform”, see panels B and C.

A. Blindly estimate T60

I Suppress additive noise in each channel using Ephraim and Malah
MMSE-LSA [2] and concatenate enhanced channels.

I Use maximum-likelihood blind T60 estimator by Löllmann et al. [3].
I T60 estimation improves with more data (i.e., more channels).

B. Short-time fan-chirp transform (STFChT) [4]

The STFChT is used to implement our method of extending the coherence
time of analysis. Definition of STFChT:

Xd(f, α̂d) =
∫ Tw/2

−Tw/2
w(τ )xd(φ−1

α̂d
(τ ))e−j2πfτdτ (1)

I w(t) is an analysis window of duration Tw.
I xd(t) = x(t− dThop), t ∈ [0,Tw], is a short frame of a

time-domain signal.
I φα̂d(t) is a linear phase trajectory
I φ−1

α̂d
(t) is a time-warping function.

I α̂d is an estimated chirp rate α for the dth frame.

xd[n] Estimate
α̂d

Time-warping

using φ−1
α̂d

(n/fs)
w[n] FFT

Xd(k, α̂d)

I Time-warping converts signals with linearly time-varying fundamental
frequency f0(t) into signals with approximately constant f0(t).

6

0 20 40 60
−0.5

0

0.5

1

Time (ms)
0 20 40 60

−0.5

0

0.5

1

Time (ms)

1. Motivating example and problem statement

t

F0
β

0−Tw / 2 Tw / 2

f0(t) = F0 1+αt( ) = F0 1+ β
F0
t

⎛
⎝⎜

⎞
⎠⎟

Stationary f0 (t) Nonstationary f0 (t)
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t

F0

0−Tw / 2 Tw / 2

f0(t) ≈ F0

Time-warping

using φ−1
α̂d

(n/fs)
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t

F0

0−Tw / 2 Tw / 2

f0(t) ≈ F0

C. Inverse STFChT

I Time-warping implemented as combination of oversampling and
interpolation, which achieves almost perfect STFChT reconstruction.

Xd(k, α̂d)
IFFT w−1[n]

Time-warping
using φα̂d(n/fs)

x̂d[n]

D. STFT versus STFChT (32 ms and 128 ms window durations)
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Synthetic harmonics.

A direct demonstration
of the advantage of
extending coherence:
examples of STFT with
32 ms and 128 ms
windows versus
STFChT with 128 ms
window.
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Reverberated speech utterance.

E. Suppress reverberation and noise using Habets MMSE-LSA [1]

I Employs a statistical model of reverberation:

E
[
h2[n]

]
=


σ2

de−2ζ̄n, 0 ≤ n < nd

σ2
r e−2ζ̄n, n ≥ nd

0 otherwise.
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B. Dereverberation and denoising of speech 

Statistical modeling of reverberation*

y[n] = s[n]*h[n]+ v[n] = he[n]*s[n]+ hℓ[n]*s[n]+ v[n]

= xe[n]+ xℓ[n]+ v[n]

ζ = 3ln(10)
T60 fs

κ =
σ d
2

σ r
2E h2[n]⎡⎣ ⎤⎦ =

σ d
2e−2ζ n , for 0 ≤ n < nd

σ r
2e−2ζ n , for n ≥ nd

0 otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

E h2[n]⎡⎣ ⎤⎦ =
σ d
2e−2ζ n , for 0 ≤ n < nd

σ r
2e−2ζ n , for n ≥ nd

0 otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

y[n] = s[n]*h[n]+ v[n]

n
0

h2[n]

T60nd ne

he[n] hℓ[n]

= he[n]*s[n]+ hℓ[n]*s[n]+ v[n]

*Polack 1988, Habets 2010

4. Applications

Reverb impulse 
response (RIR)

/37

ζ = 3ln(10)
T60 fs

I Estimate complex time-frequency coefficients X̂e(d, k) of early
reverberant component using Habets MMSE-LSA gains [1]:

X̂e(d, k) = GMMSE−LSA(d, k) · Y(d, k) (2)

I Assumes stationary signal with constant f0(t) over analysis duration.
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. This assumption limits STFT
window length, which limits data
record length for statistical
estimators.

. The STFChT is coherent with
speech over longer durations,
which allows longer data records
and thus provides higher SNR.

Results for SimData test set
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Orig

1ch STFT 512
1ch STFT 2048
1ch STFChT
2ch STFT 512
2ch STFT 2048
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8ch MVDR
8ch STFT 512
8ch STFT 2048
8ch STFChT

STFChT processing achieves substantially better PESQ scores while maintaining roughly equivalent

SRMR scores. STFT 512 uses a 32 ms window; STFT 2048 and STFChT use 128 ms windows.

Results for RealData test set

I STFT with standard 32ms
window gives best SRMR scores,
but introduces artifacts.
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I STFChT processing, though achieving lower SRMR scores than STFT
processing, exhibits fewer artifacts than STFT processing.
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