

THE NTU-ADSC SYSTEMS FOR REVERBERATION CHALLENGE 2014

presented by

<u>Xiong Xiao¹</u>, Shengkui Zhao², Duc Hoang Ha Nguyen³, Xionghu Zhong³, Douglas L. Jones², Eng Siong Chng^{1,3}, Haizhou Li^{1,3,4}

¹Temasek Lab@NTU, Nanyang Technological University, Singapore.

²Advanced Digital Sciences Center, Singapore.

³School of Computer Engineering, Nanyang Technological University, Singapore.

⁴Department of Human Language Technology, Institute for Infocomm Research, Singapore.

Outline

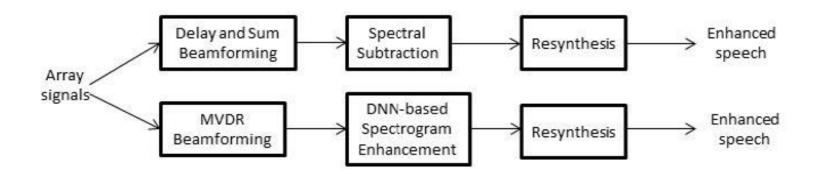
- System Highlights
- Speech Enhancement
 - Delay and Sum + spectral subtraction
 - MVDR + DNN spectrogram enhancement
- Speech Recognition
 - Multi condition training
 - Clean condition training
- Summary

System Highlights

- Beamforming
 - Delay and Sum, MVDR
 - Classic method, always works!

DNN feature mapping

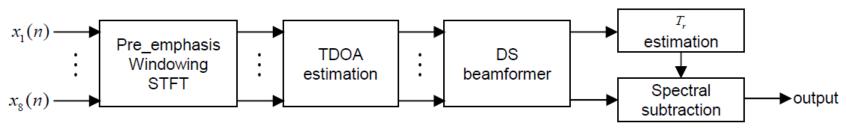
- Mapping reverberant spectrogram to clean spectrogram for enhancement
- Mapping reverberant MFCC features to clean features for ASR
- DNN acoustic modeling for ASR
 - Discriminative feature learning and modeling in a single framework.
- Feature adaptation (Cross-transform) for ASR
 - a generalization of temporal filter and fMLLR transform.
 - explicitly use the correlation between feature frames to counter distortions that have effects over many frames.



Outline

- System Highlights
- Speech Enhancement
 - Delay and Sum + spectral subtraction
 - MVDR + DNN spectrogram enhancement
- Speech Recognition
 - Multi condition training
 - Clean condition training
- Summary

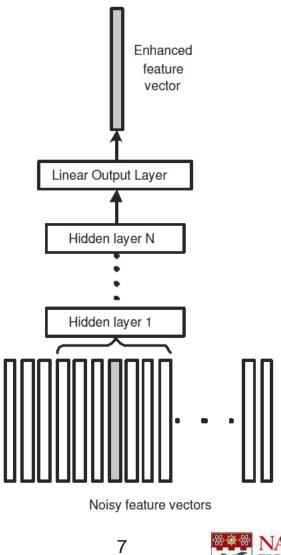
Speech Enhancement Systems



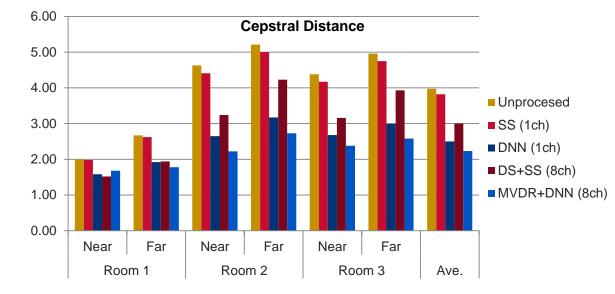
Two speech enhancement systems are considered:

- **DS** beamforming + spectral subtraction (**DS**+**SS**);
- MVDR beamforming + DNN based spectrogram enhancement (MVDR + DNN).

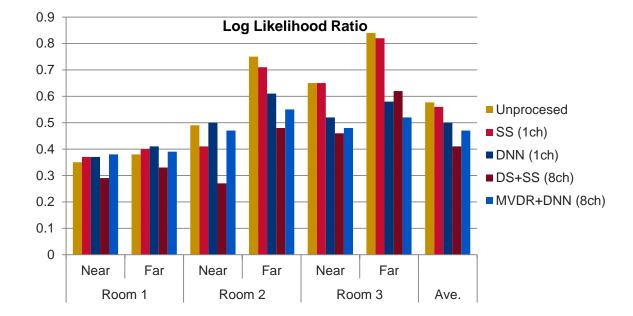
Speech Enhancement – DS + Spectral Susbtraction



- **DS** beamforming
- Windowing STFT: 64ms Hanning window,
- GCC-PHAT for TDOA estimation,
- Multi-channel phase alignment and sum.
 - 75% frame overlap, 1024 point STFT.
- **General Subtraction**
- Reverberation time estimation: ML method.
- Amplitude spectral subtraction.

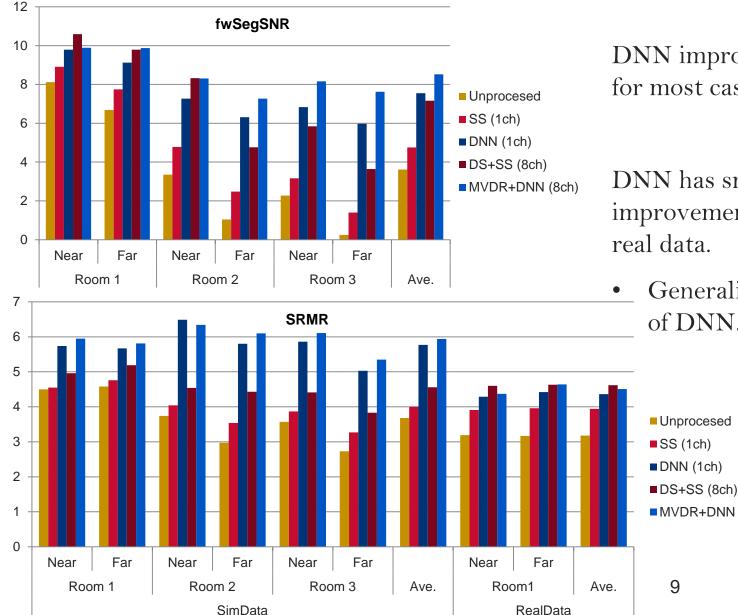

Speech Enhancement – MVDR + DNN feature mapping

- Use DNN to map a window of reverberant feature vectors to a (central) clean feature vector.
- Let DNN learn to do dereverberation.
- For speech enhancement, input and output are spectrum vectors.
- For ASR, input and out are MFCC feature vectors.
- Training data: frame aligned clean and multi-condition data.
- DNN size: 2827– 3x3072 771
 - Predict both static and dynamic spectrum, then merge them to produce smoothed static spectrum.



Objective measures – CD and LLR

Both DS+SS and MVDR+DNN reduces cepstral distances and LLR significantly, especially for high reverberation cases.


DNN degrades LLR significantly for 8-ch low reverberation cases.

8

Objective measures – fwSegSNR and SRMR

DNN improves fwSegSNR for most cases.

DNN has smaller improvements in SRMR for real data.

Generalization problem of DNN.

Unprocesed

MVDR+DNN (8ch)

SS (1ch) DNN (1ch)

9

Subjective measures

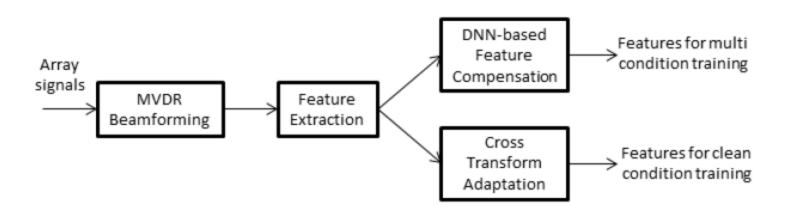
	A	mont of Reverb	eration S	Score		
			Mean			
			Simulated		RealData	
			Room 2		Room1	
			Near	Far	Near	Far
1ch		Unprocessed	41.5	31.0	28.9	21.5
	SS	Processed	52.6	42.7	37.8	38.6
		Improvement	11.1	11.7	8.9	17.2
	DNN	Processed	59.3	51.7	63.9	63.5
		Improvement	17.8	20.7	35.0	42.0
8ch		Unprocessed	21.5	18.9	14.6	16.6
	DS+SS	Processed	47.4	42.1	42.2	30.7
		Improvement	25.9	23.2	27.6	14.1
	MVDR+DNN	Processed	83.3	50.1	50.2	29.4
		Improvement	61.8	31.2	35.6	12.9
		Overall Quali	ty Score			
			Me Simulated		RealData	
			Room 2		Room1	
						-
			Near	Far	Near	Far
		Unprocessed	36.7	46.3	51.9	42.9
	SS	Processed	36.7 <mark>47.9</mark>	46.3 47.4	51.9 <mark>45.6</mark>	42.9 50.2
1ch	SS	Processed Improvement	36.7 47.9 11.2	46.3 47.4 1.1	51.9 45.6 -6.3	42.9 50.2 7.3
1ch	SS DNN	Processed Improvement Processed	36.7 47.9 11.2 19.6	46.3 47.4 1.1 16.6	51.9 45.6 -6.3 16.7	42.9 50.2 7.3 16.4
1ch		Processed Improvement Processed Improvement	36.7 47.9 11.2 19.6 -17.1	46.3 47.4 1.1 16.6 -29.7	51.9 45.6 -6.3 16.7 -35.3	42.9 50.2 7.3 16.4 -26.5
1ch		Processed Improvement Processed Improvement Unprocessed	36.7 47.9 11.2 19.6 - 17.1 37.0	46.3 47.4 1.1 16.6 -29.7 33.8	51.9 45.6 -6.3 16.7 -35.3 30.6	42.9 50.2 7.3 16.4 -26.5 25.3
		Processed Improvement Processed Improvement Unprocessed Processed	36.7 47.9 11.2 19.6 -17.1 37.0 57.8	46.3 47.4 1.1 16.6 -29.7 33.8 55.8	51.9 45.6 - 6.3 16.7 - 35.3 30.6 52.0	42.9 50.2 7.3 16.4 -26.5 25.3 43.9
1ch 8ch	DNN	Processed Improvement Processed Improvement Unprocessed Processed Improvement	36.7 47.9 11.2 19.6 - 17.1 37.0 57.8 20.8	46.3 47.4 1.1 16.6 -29.7 33.8 55.8 22.0	51.9 45.6 -6.3 16.7 -35.3 30.6 52.0 21.4	42.9 50.2 7.3 16.4 -26.5 25.3 43.9 18.6
	DNN	Processed Improvement Processed Improvement Unprocessed Processed	36.7 47.9 11.2 19.6 -17.1 37.0 57.8	46.3 47.4 1.1 16.6 -29.7 33.8 55.8	51.9 45.6 - 6.3 16.7 - 35.3 30.6 52.0	42.9 50.2 7.3 16.4 -26.5 25.3 43.9

MVDR+DNN generally removes more reverberation than DS+SS.

But it also introduces more speech distortion and results in poorer quality.

Reasons?

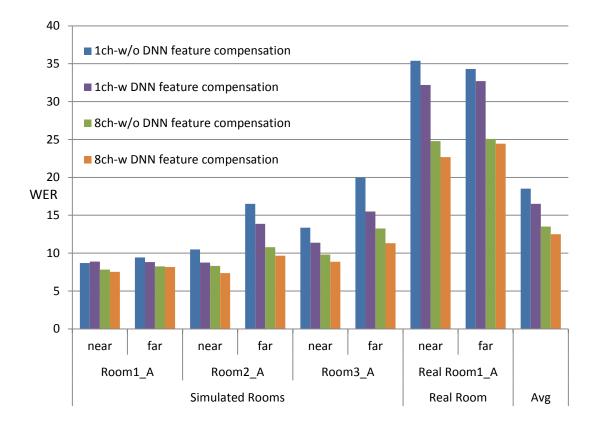
- Frame-by-frame processing of DNN.
- DNN reduces mean square errors between predicted log spectrum and clean log spectrum, not a perceptually meaningful error.



Outline

- System Highlights
- Speech Enhancement
 - Delay and Sum + spectral subtraction
 - MVDR + DNN spectrogram enhancement
- Speech Recognition
 - Multi condition training
 - Clean condition training
- Summary

Speech Recognition Systems

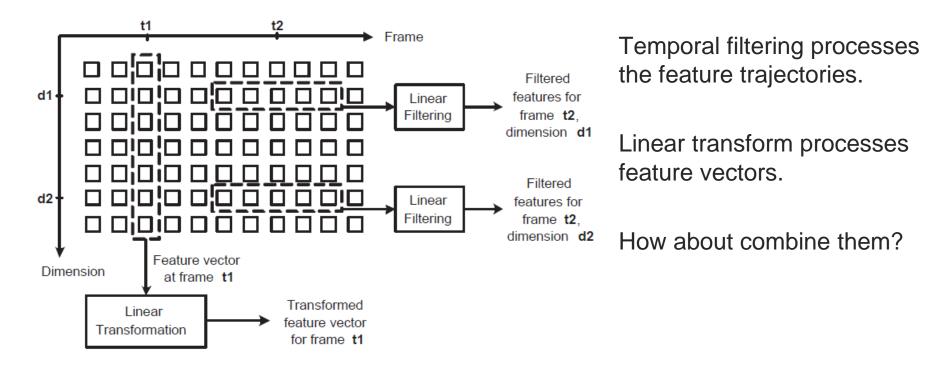


- MVDR beamforming for 2ch and 8ch.
- Clean condition training scheme
 - Cross Transform Adaptation
 - CMLLR (256 class) model adaptation.
 - HMM/GMM model (the challenge baseline settings)
- Multi condition training scheme
 - DNN based feature compensation
 - DNN based acoustic modeling

ASR - Multi-condition training – results

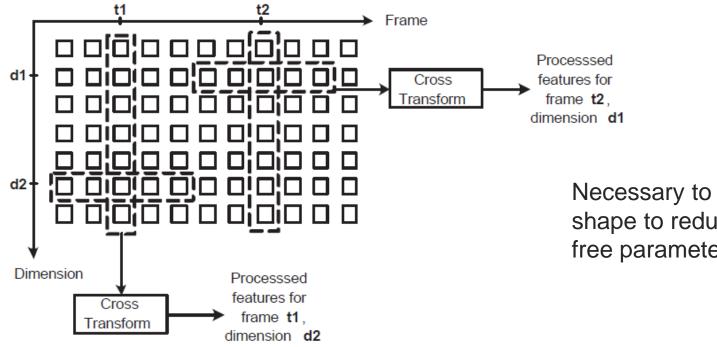
- DNN feature mapping (585-3x2048-39)
- DNN acoustic modeling (351-7x2048-3500, RBM pretraining + CrossEntropy + SMBR)

DNN feature compensation and DNN acoustic model are complementary.


Reason?

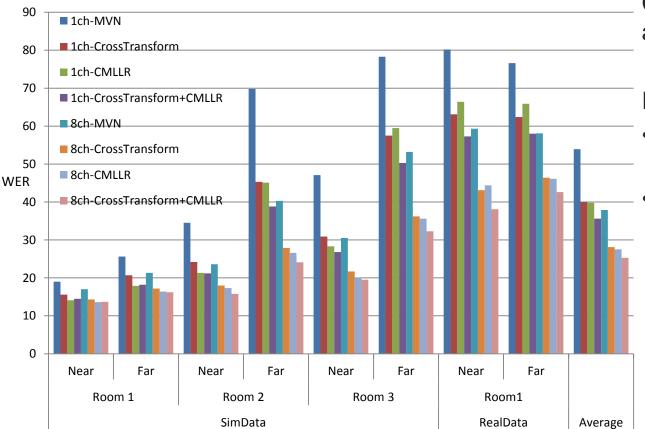
- DNN feature compensation uses parallel corpus and wider context.
- Good to have a two concatenated DNN architecture than a big DNN?

ASR - Clean-condition training


- Use cross transform for feature compensation
- Use CMLLR for model adaptation (challenge script)
- HMM/GMM system (challenge script)

ASR – Cross-transform

- Cross-transform is a generalization of both temporal filtering and linear transform.
- To adapt the features at a time-frequency location, both the feature vector and feature trajectory that contains the location are used in the regression.



Necessary to take the crossshape to reduce the number of free parameters.

ASR - Clean-condition training – Results

- Cross-transform (33 frame window size, batch mode)
- CMLLR (256 class, batch mode)
- HMM/GMM system (Challenge scripts)

Cross-transform and CMLLR model adaptation are complementary.

Reason:

- Cross-transform uses longer context size.
- Multi-class CMLLR is more flexible: different transform for different classes.

Summary

- Traditional beamforming works well for both speech enhancement and recognition.
- DNN reduces reverberation significantly, but also introduces high distortion especially in high reverberation cases.
- Cross-transform adapts features using both long term temporal information and spectral information. Complementary to CMLLR.
- Future directions
 - Analyze why DNN produces distortions to speech signal and propose solution.
 - Apply cross-transform to adaptive training of DNN based acoustic model in multicondition training scheme.

Thank you!

