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System Highlights 

 

• Beamforming 
– Delay and Sum, MVDR 

– Classic method, always works! 

 

• DNN feature mapping 
– Mapping reverberant spectrogram to clean spectrogram for enhancement 

– Mapping reverberant MFCC features to clean features for ASR 

 

• DNN acoustic modeling for ASR 
– Discriminative feature learning and modeling in a single framework. 

 

• Feature adaptation (Cross-transform) for ASR 
– a generalization of temporal filter and fMLLR transform.  

– explicitly use the correlation between feature frames to counter distortions that have 

effects over many frames.  
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Speech Enhancement Systems 
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Two speech enhancement systems are considered: 

 DS beamforming + spectral subtraction (DS+SS); 

 MVDR beamforming + DNN based spectrogram enhancement 

(MVDR + DNN). 



Speech Enhancement – DS + Spectral 

Susbtraction 
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 DS beamforming 

 Windowing STFT: 64ms Hanning window, 

 GCC-PHAT for TDOA estimation, 

 Multi-channel phase alignment and sum. 

     75% frame overlap, 1024 point STFT.  

 Spectral Subtraction 

 Reverberation time estimation: ML method. 

 Amplitude spectral subtraction. 



Speech Enhancement – MVDR + DNN 

feature mapping 
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 Use DNN to map a window of 

reverberant feature vectors to a 

(central) clean feature vector. 

 Let DNN learn to do dereverberation.  

 For speech enhancement, input and 

output are spectrum vectors.  

 For ASR, input and out are MFCC 

feature vectors.  

 Training data: frame aligned clean and 

multi-condition data.  

 DNN size: 2827– 3x3072 – 771 

 Predict both static and dynamic spectrum, 

then merge them to produce smoothed 

static spectrum.  



Objective measures – CD and LLR 
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Both DS+SS and 

MVDR+DNN reduces 

cepstral distances and LLR 

significantly, especially for 

high reverberation cases. 

 

DNN degrades LLR 

significantly for 8-ch low 

reverberation cases.  



Objective measures – fwSegSNR and SRMR 
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DNN improves fwSegSNR 

for most cases.  

 

DNN has smaller 

improvements in SRMR for 

real data.  

• Generalization problem 

of DNN.  



Subjective measures 
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MVDR+DNN generally removes more 

reverberation than DS+SS.  

 

But it also introduces more speech 

distortion and results in poorer quality.  

 

Reasons? 

• Frame-by-frame processing of DNN.  

• DNN reduces mean square errors 

between predicted log spectrum and 

clean log spectrum, not a perceptually 

meaningful error.  
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Speech Recognition Systems 

• MVDR beamforming for 2ch and 8ch.  

• Clean condition training scheme 

– Cross Transform Adaptation 

– CMLLR (256 class) model adaptation.  

– HMM/GMM model (the challenge baseline settings) 

• Multi condition training scheme 

– DNN based feature compensation 

– DNN based acoustic modeling 
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ASR - Multi-condition training – results  

• DNN feature mapping (585-3x2048-39) 

• DNN acoustic modeling (351-7x2048-3500, RBM pretraining + 

CrossEntropy + SMBR) 
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DNN feature compensation 

and DNN acoustic model are 

complementary.   

 

Reason? 
 

• DNN feature compensation uses 

parallel corpus and wider context.  

 

• Good to have a two concatenated 

DNN architecture than a big 

DNN? 
0

5

10

15

20

25

30

35

40

near far near far near far near far

Room1_A Room2_A Room3_A Real Room1_A

Simulated Rooms Real Room Avg

1ch-w/o DNN feature compensation

1ch-w DNN feature compensation

8ch-w/o DNN feature compensation

8ch-w DNN feature compensation

WER 



ASR - Clean-condition training 

• Use cross transform for feature compensation 

• Use CMLLR for model adaptation (challenge script) 

• HMM/GMM system (challenge script) 
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Temporal filtering processes 

the feature trajectories.  

 

Linear transform processes 

feature vectors.  

 

How about combine them? 



ASR – Cross-transform 

• Cross-transform is a generalization of both temporal filtering and linear 

transform.  

• To adapt the features at a time-frequency location, both the feature 

vector and feature trajectory that contains the location are used in the 

regression.  
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Necessary to take the cross-

shape to reduce the number of 

free parameters.  



ASR - Clean-condition training – Results  

• Cross-transform (33 frame window size, batch mode) 

• CMLLR (256 class, batch mode) 

• HMM/GMM system (Challenge scripts) 
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Cross-transform and 

CMLLR model adaptation 

are complementary.  

 

Reason: 

• Cross-transform uses 

longer context size.  

• Multi-class CMLLR is 

more flexible: different 

transform for different 

classes.  



Summary 

• Traditional beamforming works well for both speech enhancement and 

recognition.  

 

• DNN reduces reverberation significantly, but also introduces high 

distortion especially in high reverberation cases.  

 

• Cross-transform adapts features using both long term temporal 

information and spectral information. Complementary to CMLLR.  

 

• Future directions 

– Analyze why DNN produces distortions to speech signal and propose solution.  

– Apply cross-transform to adaptive training of DNN based acoustic model in multi-

condition training scheme.  
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Thank you! 
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