

OVERVIEW

- Multi-channel speech dereverberation
- Cross-channel cancellation
- Spectral decomposition
- Convolution in spectral magnitude domain
- Generalized Kullback-Leibler divergence
- Constrained and regularized non-negative deconvolution
- Solved by a multiplicative algorithm
- Evaluations on "speech enhancement task"

ALGORITHM

Goal: Estimate the spectral magnitude of clean speech S

- Reverberated speech spectral magnitude X
- Actual observation *Z* by assuming noise
- $Z[n,k] \approx X[n,k] = S[n,k] * H[n,k],$

Single-change solution:

By imposing the non-negativity and sparsity constraints (H. Kameoka et al, 2009 and K. Kumar, et al, 2011)

$$\{S, H\} = argmin_{S,H}.J$$
where $J = \sum_{i} (Z[i, k] - \sum_{m} S[m, k]H[i - m, k])^{2}$

$$+ \lambda \sum_{i} S[i, k]$$
(1)

s.t.
$$S[n,k] \ge 0, H[n,k] \ge 0, \sum_{n} H[n,k] = 1$$

Further motivation:

• Advantage of KL divergence for estimating small values in between spectral peaks compared to l_2 norm. $D(x|y) = x \log \frac{x}{y} - x + y.$

Speech Dereverberation by Constrained and Regularized Multi-Channel Spectral Decomposition: Evaluated on **REVERB Challenge**

Meng Yu, Audience Inc.

Frank K. Soong, Microsoft Research Asia

ALGORITHM cont.

• Cross-channel cancellation enforces the filters $H_i, i = 1, 2, ..., N$, to resolve the spatial difference between channels. The crosschannel cancellation error is to be minimized.

Multi-channel solution:

$$J = \sum_{j=1}^{2} \sum_{i} (Z_{j}[i,k] \log \frac{Z_{j}[i,k]}{\sum_{m} S[m,k]H_{j}[i-m,k]} - Z_{j}[i,k] + \sum_{m} S[m,k]H_{j}[i-m,k]) + \beta \sum_{i} (\sum_{m} X_{1}[m,k]H_{2}[i-m,k] - \sum_{m} X_{2}[m,k]H_{1}[i-m,k])^{2} + \lambda \sum_{i} S[i,k]$$

$$s.t.$$
(2)

$$S[n,k] \ge 0, H_j[n,k] \ge 0, \sum_n H_j[n,k] = 1, j = 1, 2$$

 X_j is substituted by Z_j in the above model as the solution $\hat{S} * \hat{H}_i$ is expected to converge to Z_i . Easy to be extended to N-channel (N > 2).

Diagram:

Channel: Select channel 1 and 2 for dual-channel processing, while 1, 2, 3, and 4 for 4-channel processing.

Post processing: A noise suppression post processing (optimally-modified log-spectral amplitude speech estimator (I. Cohen 2003) is applied to the dereverberated signal to suppress the background noise as an option.

EXPERIMENTAL EVALUATION

	CD	LLR	FWSNR	SRMR	PESQ
CD	-	0.15	0.66	0.58	0.69
LR	0.15	-	-0.45	-0.49	-0.33
/SNR	0.66	-0.45	-	0.99	0.87
RMR	0.58	-0.49	0.99	-	0.82
ESQ	0.69	-0.33	0.87	0.82	-

Microsoft[®] Research 溦软亚洲研究院